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Abstract With an escalating arms race to adopt ma-

chine learning (ML) in diverse application domains,

there is an urgent need to support declarative machine

learning over distributed data platforms. Toward this

goal, a new framework is needed where users can specify

ML tasks in a manner where programming is decoupled

from the underlying algorithmic and system concerns.

In this paper, we argue that declarative abstractions

based on Datalog are natural fits for machine learning

and propose a purely declarative ML framework with

a Datalog query interface. We show that using aggre-

gates in recursive Datalog programs entails a concise ex-

pression of ML applications, while providing a strictly

declarative formal semantics. This is achieved by in-

troducing simple conditions under which the semantics

of recursive programs is guaranteed to be equivalent

to that of aggregate-stratified ones. We further pro-

vide specialized compilation and planning techniques

for semi-naive fixpoint computation in the presence of

aggregates, and optimization strategies that are effec-

tive on diverse recursive programs and distributed data

platforms. To test and demonstrate these research ad-

vances,we have developed a powerful and user-friendly

system on top of Apache Spark. Extensive evaluations

on large-scale datasets illustrate that this approach will

achieve promising performance gains while improving

both programming flexibility and ease of development

and deployment for ML applications.
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1 Introduction

The past decades have witnessed a booming demand

for large scale data analysis in diverse application do-

mains, such as online advertisement, news recommen-

dation, driverless cars, and voice-controlled devices. As

machine learning (ML) has achieved widespread success

for many data-driven analytical tasks, demand for scal-

ing ML algorithms to ever larger datasets became in-

evitable. Recently, researchers from both academia and

industry have devoted great efforts to building powerful

distributed data processing platforms, such as Hadoop
and Apache Spark, which utilize and extend the Map-

Reduce computation model. The availability of such

platforms provides a great opportunity for scaling up

ML applications due to their natural in-memory sup-

port of advanced big-data applications. Many scalable

ML libraries based on different high-level programming

languages have been provided by these platforms. A

number of remarkable projects underscore the signifi-

cant progress of systems and applications in this area,

including MLlib [47], Mahout [1] and MADlib [29] etc.

Although these systems and libraries ease the burden of

implementing ML applications, they still impose strict

requirements on developers. Specifically, it often takes

considerable efforts to develop new or customize ex-

isting ML algorithms, since developers must manage

details of the distributed implementations of ML algo-

rithms over the underlying platforms, without having

full control on how and when the data is accessed.

In order to make better use of the computing re-

sources and simplify the development and deployment,



a declarative ML framework is needed where program-

ming can be decoupled from the underlying algorith-

mic and system concerns. In other words, a framework

is needed that allows users to focus on the data flow

instead of low-level interfaces. We believe that Dat-

alog is a particularly attractive choice for expressing

ML algorithms because its natural support for reason-

ing and recursion simplifies ML applications. Recently,

a renaissance of interest has focused on Datalog be-

cause of its succinct and declarative expression of a wide

spectrum of data-intensive applications, including data

mining [36], knowledge reasoning [8], data center man-

agement [79] and social networks [57] etc. A common

trend in the new generation of Datalog applications is

the usage of aggregates in recursion, since they enable

the concise expression and efficient support of much

more powerful programs than those expressible by ones

that are stratified w.r.t. negation and aggregates. Re-

cent theoretical advances [45,77,78] allow us to provide

formal declarative semantics to the powerful recursive

queries that use aggregates in recursion. These findings

outline the promising blueprints of a declarative ML

framework using Datalog.

In this paper, we propose a declarative framework

for efficiently expressing a broad range of ML appli-

cations. Unlike the previous studies that rely on user-

defined functions (UDF) [21] and those that employ

a hybrid imperative and declarative framework [40,30,

35], our framework uses purely declarative programs

which only uses the basic logic-based constructs of Dat-

alog. The success of a framework critically depends on

the ability of the underlying engine to turn declarative

queries and programs into efficient and scalable execu-

tions. To this end, we implement our ML framework

as an extension of BigDatalog [59], which is a shared-

nothing Datalog engine built on top of Apache Spark,

to take advantage of its power in dealing with itera-

tive computation on massive datasets. Compared with

simpler recursive applications, ML applications require

recursions involving more complex structures, e.g. mu-

tual and non-linear recursion, and multiple aggregates.

This calls for optimized semi-naive fixpoint computa-

tion techniques not tackled in previous studies. To ad-

dress these issues, we propose a series of compilation

and planning techniques to support these powerful Dat-

alog programs. Moreover, we further provide a number

of novel optimizations to improve the overall perfor-

mance for ML workloads. Note that our proposed tech-

niques are platform-independent and can not limited to

the BigDatalog system.

The effectiveness of Datalog in expressing ML appli-

cations is due to the great expressive power achieved by

allowing the use of aggregates satisfying particular con-

ditions in recursions. This basic idea was first proposed

in [45,77], and proved quite effective at expressing a

rich set of graph and data mining algorithms [15,78].

The formal semantics of such queries lies in the fact that

programs satisfying the Pre-Mappability (PreM) prop-

erty [77] can be transformed into equivalent aggregate-

stratified programs. Unfortunately, while the notions

in [77] work well for the min and max constraints used

in simple recursive queries, they proved insufficient to

deal with the classical ML applications which, along

with extrema, also make extensive usage of other aggre-

gates, such as sum, count and average. In this paper,

we find that ML applications tend to apply aggregates

over sets of relations whose cardinality could be pre-

computed ahead of time, whereby the computation of

all kinds of aggregates becomes monotonic. Following

this route, we provide formal semantics for ML applica-

tions expressed in Datalog from fixpoint computation.

As a result of these advances, this paper makes the

following contributions:

– We devise a declarative ML framework with Datalog

query interface. We implement our system on top

of Apache Spark and, to enhance its usability, we

provide DataFrame APIs that are similar to, and

actually more general than, those of Apache MLlib.

– We propose a series of compilation and planning

techniques to enable the efficient expression and ex-

ecution of ML applications (Section 5). We further

develop several optimizations for the recursive plans

of ML workloads (Section 6).

– We provide the formal semantics of Datalog pro-

grams for ML applications (Section 4).
– We evaluate our framework on several popular bench-

marks. Experimental results show that our frame-

work outperforms, by an obvious margin, existing

ML libraries on Spark, and other special-purpose

ML systems as well.

The rest of the paper is organized as follows: Sec-

tion 2 reviews the basics about Datalog language and

machine learning. Section 3 discusses how ML applica-

tions can be expressed in Datalog and the advantages of

this approach. Section 4 provides the formal semantics

of the above ML queries. Section 5 presents the system

implementation and proposes necessary techniques to

support complicated Datalog programs for ML applica-

tions. Section 6 further presents several optimizations

ranging from planning to execution. Section 7 discusses

important issues such as usability and generality. Sec-

tion 8 reports and discusses the experimental results.

Section 9 surveys the related work. Finally, Section 10

concludes the whole paper.



2 Preliminary

2.1 Datalog and its Evaluation

A Datalog program P consists of a finite set of rules

operating on sets of facts described by database-like

schemas. A rule r has the form h← r1, r2, ..., rn, where

h is the head of rule, r1, r2, ..., rn is the body and the

comma separating atoms in the body is logical conjunc-

tion (AND). The rule head h and each ri are atoms

having form p(t1, t2, ..., tk), where p is a predicate and

t1, t2, ..., tk are terms which can be variables or con-

stants. On occasions, we use the terms predicate, table

and relation interchangeably. A rule defines a logical

implication: if all predicates in the body are true, then

so is the head h. There are two kinds of relations: (i)

the base relations are defined by tables in the EDB (ex-

tensional database) and (ii) the derived relations are

defined by the heads of rules and form the IDB (inten-

tional database).

Example 1 Query 1 - Transitive Closure (TC)

r1,1 : tc(X, Y)← arc(X, Y)

r1,2 : tc(X, Y)← tc(X, Z), arc(Z, Y)

An example of recursive Datalog program is shown

above in the Transitive Closure program in Query 1.

Next we will illustrate some Datalog concepts and ter-

minology with the help of it.

Query 1 derives the IDB relation tc from the EDB

table arc representing the edges of a graph. Since the

predicate tc is contained in both the head and the body

of rule r1,2, tc is a recursive predicate and r1,2 is a re-

cursive rule. The recursive predicate tc is also the head

predicate for r1,1 which is non-recursive and therefore

provides the base rule in the fixpoint definition and

computation of the recursive predicate. In fact the pro-

cess of query evaluation first initializes tc using r1,1, and

then uses r1,2 to recursively produce new tc facts from

the conjunction of tc facts generated in previous itera-

tions and the arc relation. Since at most one recursive

relation is included in the body of any rule, Query 1 rep-

resents a case of linear recursion; the term non-linear

recursion denotes instead the case where some rules

contain multiple recursive relations.

The state-of-the-art method for evaluating a Data-

log program is the semi-naive (SN) evaluation [4]. SN

performs the differential fixpoint computation of Dat-

alog programs in a bottom-up manner. It starts with

the application of the base rule and then iteratively ap-

plies recursive delta rules until a fixpoint is reached.

The core idea of the SN optimization is that, instead

of using the original rules, the evaluation can use delta

rules that are based on the facts which were generated

in the previous iteration step.

Algorithm 1: Semi-naive Evaluation of Query 1

begin1

δtc = arc(X,Y );2

tc = δtc;3

do4

δtc′ = ΠX,Y (δ tc(X,Z) ./ arc(Z, Y ))− tc;5

tc = tc ∪ δtc′;6

δtc = δtc′7

while δtc 6= ∅ ;8

return tc;9

end10

For example, consider how the Transitive Closure

program of Query 1 is evaluated by Algorithm 1. The

semi-naive evaluation starts by applying the base rule

r1,1 (line: 2) and then iterates over the recursive rule r1,2
(line: 4-8) until fixpoint is reached. We use tc and tc′ to

denote the set of facts in the recursive relation tc at the

beginning and end of the current iteration, respectively.

Then the set of facts generated in the current iteration

could be calculated as δtc = tc′ − tc (line: 5). And the

contents of tc and tc′ are updated for the next iteration

of evaluation (line: 6-7). During the evaluation of r1,2 in

the next iteration, instead of using the whole relation

tc(X,Z), SN just joins δtc(X,Z) with arc(Z, Y ). The

termination condition of Datalog evaluation is defined

by its fixpoint semantics. In this example, the fixpoint

is reached when δtc = ∅ (line: 8). SN has been widely

applied in evaluating recursive Datalog programs and

simple SN extensions for recursive queries with aggre-

gates have been proposed for the single-node [60], multi-

core [72] and distributed [59] environments.

2.2 Basics of Machine Learning

Generally speaking, the ML problem can be formalized

as follows: Given a training set D with n instances, each

instance consists of a d-dimensional feature vector Xi

(i ∈ [1, n]) with the jth dimension as xij and a numeric

target yi. For the regression problems, we have yi ∈ R;

while for classification problems, we have yi ∈ {−1, 1}.
The process of discovering the model can be formalized

as an optimization problem using the given D. We are

given a function f(θ;X) that makes prediction with

a given model θ on the unseen data. The objective is

to find a set of parameters θ∗ that minimizes the loss

function L on f , i.e. θ∗ = argminθL(f(θ;X), Y ). This

can be achieved with the family of first-order-gradient

optimization methods, namely gradient descent (GD).

There are different ways to compute the gradient

depending on the portion of training instances that is



used to update the model at each iteration, namely

batch gradient descent (BGD), stochastic gradient de-

scent (SGD) and mini-batch gradient descent (MGD).

As is shown in the practice of Google’s SQML project [64],

BGD is widely adopted in modern ML on relational en-

gines. In this paper, we start our discussion from BGD,

which computes the gradients by performing a complete

pass on the training data at each iteration. BGD starts

from an initial model θ0 and iterates with Equation (1)

by the increasing number of iterations k until conver-

gence is reached.

θk+1 = θk −
∑

(X,y)∈D

∇L(f(θk;X), y) +Ω(θk) (1)

where L is the loss function, ∇ is the gradient function

based on L and Ω is the regularization.

2.3 Terminology for Recursive Queries

To describe the recursive queries expressed in Data-

log, we introduce some necessary terminologies from [4]

and [75].

The monotonicity property for the rules defining a

recursive predicate ensures that the fixpoint procedure

previously described produces a unique result that is

the least fixpoint of the mapping defined by the rules.

Rules that do not use negation or aggregates are

monotonic: these rules can be implemented using union,

select, projection, Cartesian product, natural join, i.e.,

the monotonic constructs of relational algebra. How-

ever, rules using negation are non-monotonic and can-

not be used in recursive queries. Rules using aggregates

are only monotonic is some special cases, such as those

discussed in Section 4 where the aggregates are applied

to relations that are completely known or can be com-

puted prior to the processing of the recursive rules.

Given a Datalog program P , its dependency graph

GP can be constructed as following: Every rule is a

vertex, and an edge 〈ri, rj〉 appears in the graph when-

ever the head of ri appears in the body of rj . If non-

monotonic constructs are applied before ri, the node

corresponding to it in Gp is a negated node. With the

help of its dependency graph, the stratification of a Dat-

alog program can be formally stated by Definition 1.

Definition 1 By applying topological sorting over Gp,

its node can be partitioned into n strata S1, ..., Sn with

larger i in a lower stratum. The program P is stratified

when ∀ edges 〈ri, rj〉 ∈ Gp where ri ∈ Sy and rj ∈ Sx
we have that: (i) y ≥ x if ri corresponds to a non-

negated node and, (ii) y < x if ri corresponds to a

negated one.

3 Datalog for Machine Learning

In this section, we express ML applications with Data-

log and provide the formal semantics of such programs.

We first describe how to write Datalog queries for ML

applications in Section 3.1. Then we further cover the

issues of supporting generalized gradient descent and

identifying the stop condition in Section 3.2 and Sec-

tion 3.3, respectively.

3.1 Expressing ML Applications

We will next discuss how to express ML applications

with Datalog. As data sparsity is ubiquitous in ML ap-

plications, many training sets are represented in the

verticalized format to save space, such as those in the

famous LIBSVM benchmark [2]. For each training in-

stance X = 〈Id, Y, x1, · · · , xd〉, the verticalization pro-

cess would produce at most d instances 〈Id, Y, k, xi〉
(k ∈ [1, d]) as dimensions with value 0 will be omitted.

When writing the Datalog programs, we use a vertical-

ized view vtrain(Id, C, V, Y) to denote the training set,

where Id denotes the id of a training instance; Y de-

notes the label; C and V denote the dimension and the

value along that dimension, respectively.

With such a verticalized relation, we can now write

the Datalog query to describe the training process with

BGD using three recursive relations:

– model represents the trained model in verticalized

form, where each tuple contains the following three

attributes: J is the iteration counter; C is a dimen-

sion in the model; and P is the value of parameter

in that dimension.

– gradient represents the results of gradient computed

at each iteration by the three attributes G, C and J:

G is the gradient value of the Cth dimension in the

Jth iteration.

– predict represents the intermediate prediction re-

sults with model in the current iteration for each

training instance. Its schema has three attributes: J

is the iteration counter; Id is the id of the training

instance; YP is the predicted y value for the training

instance.

Among these steps, the gradient computation and

prediction with the current model can be easily repre-

sented with aggregates in recursion. Therefore, the iter-

ative training process can be expressed with a recursive

Datalog program Query 2. Firstly, the model is initial-

ized according to some predefined mechanisms in r2,1
(Here we use all 0.01 as example). Then the function f

is used to make prediction on all training instances ac-

cording to the model obtained in the previous iteration

in r2,4. Next the gradient is computed by the function



g (derived according to the loss function L) using the

predicted results in r2,3. Finally, in r2,2 the model is

updated w.r.t the gradients (and optional regulariza-

tion Ω). Here lr denotes the learning rate and n is the

number of training instances. And the training process

moves on to the next iteration (Increase J by 1).

Query 2 - Batch Gradient Descent (BGD)

r2,1 : model(0, C, 0.01) ← vtrain( , C, , ).

r2,2 : model(J1, C, NP) ← model(J, C, P),

gradient(J, C, G),

NP = P− lr ∗ (G/n + Ω(P)),

J1 = J + 1.

r2,3 : gradient(J, C, sum〈G0〉) ← vtrain(Id, C, V, Y),

predict(J, Id, YP),

G0 = g(YP, Y, V).

r2,4 : predict(J, Id, sum〈Y0〉) ← vtrain(Id, C, V, ),

model(J, C, P),

Y0 = f(V, P).

The advantage of Query 2 lies in its generality: by

varying the set of functions (f , g, Ω), it can support a

wide spectrum of ML algorithms 1, whereby an incom-

plete list of ML applications that can be expressed by

Query 2 is shown in Table 1. Besides, the Mini-batch

Gradient Descent (MGD) can also be expressed with

Datalog queries with minor changes on Query 2 (De-

tails in Section 3.2).

The output of Query 2 is the trained model. Other

necessary steps in machine learning, i.e. validation and

test, can be easily implemented in a similar way. Take

the evaluation on a test set as example: this can be

accomplished by joining a verticalized test set vtest

with the table model using a process that is similar to

Query 2. Furthermore, Query 2 can be easily extended

to memorize the evaluation result of each training in-

stance in a table, which can be used to calculate other

metrics such as AUC, precision, recall and accuracy. To

support validation sets, a verticalized vvalidate table

can be created to compute the loss after updating the

model with r2,2 in each iteration.

We further show a concrete example of training the

Linear Regression model with Batch Gradient Descent

as Query 3. We will use this as the running example to

demonstrate our proposed techniques in the following

sections.

1 In this paper, we limit our discussion to the linear models
and leave the issue of deep learning models as future work.

1 var data = sc.parallelize(input, numParts)

2 .map(d => (d.label, d.feature))

3 var weights = Vectors.dense(initW.toArray)

4 var n = weights.size

5 var converged = false

6 var i = 1

7 while (!converged && i <= numIterations) {

8 val bcWeights = data.context.broadcast(weights)

9 val seqOp = (grad, (label, feature)) => {

10 var diff = dot(feature, bcWeights.value) -

label

11 grad += dot(diff, feature)

12 grad

13 }

14 val combOp = (c1, c2) => {c1 += c2}

15 val gradientSum = data.treeAggregate(

DenseVector.zeros(n))(seqOp, combOp)

16 weights += dot(stepSize, gradientSum / data.size)

17 prevWeights = currWeights

18 currWeights = Some(weights)

19 converged = isConverged(prevWeights.get,

currWeights.get, tol=1e-6)

20 i += 1

21 }

22 weights

Fig. 1 Snippet Scala Code: BGD for Linear Regression

Query 3 - BGD for Linear Regression

r3,1 : model(0, C, 0.01)← vtrain( , C, , ).

r3,2 : model(J1, C, NP)← model(J, C, P),

gradient(J, C, G),

NP = P− lr ∗ G/n,

J1 = J + 1.

r3,3 : gradient(J, C, sum〈Id, G0〉)← vtrain(Id, C, V, Y),

predict(J, Id, YP),

G0 = 2 ∗ (YP− Y) ∗ V.
r3,4 : predict(J, Id, sum〈C, Y0〉) ← vtrain(Id, C, V, ),

model(J, C, P),

Y0 = V ∗ P.

To demonstrate the benefits of ML applications writ-

ten in Datalog, we will compare them with Scala pro-

grams that perform direct manipulations on RDDs. Fig-

ure 1 shows a fragment of a Scala program that ex-

presses the very process of Query 3 by manipulating

and directly transforming the RDDs. We can observe

from this process that compared with such a Scala pro-

gram, the Datalog program shown in Query 3 is more

succinct and simpler to define since it does not require

the programmer to: (i) know the details of query eval-

uation; (ii) specify the physical plan of dataflow and

make lower-level optimizations.



Table 1 Settings for ML Algorithms. For SVM, we append an extra 1/-1 for each instance to save the bias parameter; µ is a
hyper-parameter which controls the weight of regularization term. Meanwhile, we use a sign function to deal with the derivative
near 0 of L1 regularization in Lasso regression.

Algorithm Predict Function f Loss Function L Gradient g = 5PL ∂Regularizer Ω
Linear Regression Y P = V ∗ P (Y P − Y )2 2 ∗ (Y P − Y ) ∗ V N/A

Logistic Regression Y P =
1

1 + e−V ∗P

{
− log(Y P ), Y = 1

− log(1− Y P ), Y = 0
(Y P − Y ) ∗ V N/A

SVM Y P = V ∗ P max(0, 1− Y ∗ Y P )

{
− Y ∗ V, if Y ∗ Y P < 1

0, otherwise
N/A

L2 Regularized SVM Y P = V ∗ P max(0, 1− Y ∗ Y P )

{
− Y ∗ V, if Y ∗ Y P < 1

0, otherwise
µ ∗ P

Lasso Regression Y P = V ∗ P (Y P − Y )2 2 ∗ (Y P − Y ) ∗ V µ ∗ sgn(P )
Ridge Regression Y P = V ∗ P (Y P − Y )2 2 ∗ (Y P − Y ) ∗ V µ ∗ P

3.2 Supporting Mini-batch Gradient Descent

Previously we discussed how BGD can be expressed

with Datalog. Here, we further show how to support

Mini-batch Gradient Descent (MGD). A major chal-

lenge is due to the fact that MGD requires the training

data to be randomly shuffled before every iteration, and

this can be expensive in a distributed environment. To

tackle this issue, we adopt the trade-off proposed in [21]:

instead of making random shuffles before each iteration

step, the dataset is optimally shuffled once at the begin-

ning. Then the training data is split into batches and

MGD can be expressed in a way that is similar to BGD.

As described above, we need to randomly shuffle

the training data before the query begins. Actually,

most parts of MGD are the same as in Query 2; the

only difference comes from the way in which the predict

relation is computed and used to calculate the gradi-

ent in the current iteration. To optimize decisions, here
we need the hyper-parameters of (i) batch size bs and

(ii) cardinality of training set n. The total number of

batches in the training set can be calculated as n/bs.

We can recognize the batch of training instances that

will be involved in each iteration in the following way:

Suppose at iteration J , the Bth batch instead of the

whole dataset is used for training. Then given the Id

of a training instance, we can identify the batch it be-

longs to as Id % (n / bs). For the J th iteration, only

training instances belonging to the Bth batch, where

B = J % (n / bs), should be involved when calculating

the table predict. Therefore, the computation of Mini-

batch Gradient Descent can be realized by replacing r2,4
with the following rule:

r2,4′ : pred(J, Id, sum〈Y0〉)← vtrain(ID, C, V, ),

model(J, C, P),

Y0 = f(V, P),

Id%(n/bs) == J%(n/bs).

3.3 Termination Condition

Finally, we discuss the termination condition of Query 2.

In recursive Datalog programs, evaluation terminates

when the Datalog program reaches a fixpoint, producing

a unique minimal model. However, this model could be

infinite, in which case the fixpoint computation would

never terminate. For example, in Query 2 the tempo-

ral argument J ranges over an infinite time domain.

As J denotes the number of iterations, increasing J

by 1 means training for a new iteration. In this case,

the delta relation of model relation will always be non-

empty.

To address this issue, we add conditions that termi-

nate the iterative computation when at least one of the

following conditions is satisfied:

– The number of iteration reaches a predefined maxi-

mum number maxJ .

– The difference between training losses of two adja-

cent iterations is smaller than a predefined value ε.

Popular ML libraries, such as MLlib, enable users

to specify hyper-parameters to control termination and

limit the number of iteration in a similar manner. In

our programs, we can limit the number of iterations by

specifying maxJ and adding the condition J ≥ maxJ

to r3,2 in Query 3, which now becomes:

r3,2′ : model(J1, C, NP)← model(J, C, P), grad(J, C, G),

NP = P− lr ∗ G/n,

lesser(MaxJ, J + 1, J1).

Although IF-THEN-ELSE is a built-in construct in

many Datalog systems that could be used to express

lesser, it cannot be applied here to replace lesser.

The reason is that the semantics of IF-THEN-ELSE is

defined using negation, which would take us back to

the depths of the non-monotonic conundrum. As a re-

sult, the formal semantics of the program will no longer

hold. Therefore we use the lesser predicate defined as



follows in these rules:

lesser(MJ, I, I)← I < MJ.

lesser(MJ, I, MJ)← I ≥ MJ.

Similar revisions of our rules will also allow us to

terminate the SN computation when the difference be-

tween training losses in two successive iterations be-

comes smaller than a predefined value ε.

4 Formal Semantics

In this section, we define the formal semantics for our

recursive queries. We introduce the requirement of for-

mal semantics in Section 4.1. Next we describe the

PreM property as a partial solution to this problem

in Section 4.2. Finally we extend this solution by intro-

ducing the Pre-Computable Cardinality (PCC) prop-

erty in Section 4.3.

4.1 Requirement

We have proposed the use of aggregates in recursion to

express important procedures in the training process,

such as making prediction, computing gradient and up-

dating model. To guarantee the correctness of these pro-

cedures on different systems and execution platforms,

we need to provide a rigorous formal semantics for such

queries. For basic Datalog programs consisting of Horn

clauses the least fixpoint [75] provides an ideal formal

semantics because of its equivalence with the proof-

theoretic and model-theoretic semantics of logic, and

its amenability to efficient implementation via the semi-
naive fixpoint procedure [75]. However, the semantics

Datalog programs that uses negation or aggregates in

recursion are faced with difficult on-monotonic seman-

tics issues that have been the topic of much previous

research [23,63].

Currently, many Datalog systems and the SQL3 stan-

dards only allow the use of negation and aggregates in

stratified programs (see Definition 1). Stratified pro-

grams are easily identify from their PCG, and imple-

mented by a standard procedure called iterated fixpoint

which produces the canonical minimal model for the

program [75]. However, to express complex algorithms

such as those discussed in this paper, we need programs

that are not stratified since they use aggregates in re-

cursion. Now, although these programs can be charac-

terized under powerful formal semantics [26], such as

stable model semantics, we are still lacking efficient al-

gorithms to compute their canonical minimal model(s)

(more than one can exist for each program) and de-

ciding whether stable models exist for a given program

is also difficult. Fortunately, recent research has iden-

tified two classes of programs which combine formal

semantics with efficient computation of their canonical

minimal models and apply to our algorithms. These are

discussed next.

4.2 The PreM Property

The Pre-Mappability(PreM) property [77] provides for-

mal conditions for pushing extrema aggregates, i.e., max

and min, into recursion while preserving the semantics

of the original stratified program. As shown in Defi-

nition 2, its definition is based on viewing a Datalog

program as a mapping T (R) where T is a relational al-

gebra expression, and R is the vector of relations used

in the expression.

Definition 2 (PreM) Given a function T (R1, . . . Rk)

defined by relational algebra and a constraint γ, γ is

said to be Pre-Mappable to T if the following property

holds:

γ(T (R1, . . . , Rk)) = γ(T (γ(R1), . . . , γ(Rk))).

For instance, if T denotes the union operator, and γ

denotes the min or max constraint, we can pre-map (i.e.,

push) γ to the relations taking part in the union.

In fact, if extrema in recursive programs satisfy the

PreM property, those programs produce the same re-

sults as their equivalent aggregate-stratified version, for

which they just provide an optimized implementation

obtained by “pushing” the min and max aggregates into

recursion. Thus the SN fixpoint of the program simply

provides a more efficient realization of the aggregate-

stratified semantics already adopted by Datalog sys-
tems and SQL3 standards.

Query 5 - All Pair Shortest Path

r5,1 : spath(X, Y, D)← arc(X, Y, D).

r5,2 : spath(X, Y, min〈D〉)← spath(X, Z, D1), arc(Z, Y, D2),

D = D1 + D2.

For example, Query 5 expresses the ‘All Pairs Short-

est Path’ computation which identifies the shortest paths

between all pairs of nodes in the graph. In rule r5,1, arc
denotes the edges in the graph while D is the distance

from node X to node Y . The rule r5,2 takes arcs orig-

inating in Z and appends them to the previously pro-

duced paths terminating at Z, whereby the length of

the new arc is D = D1 +D2. In this process, it is safe

to pre-map the min aggregate to D as it only filters out

tuples in spath that will produce non-minimal values

for D. Consequently, the performance of the query is

much more efficient than in the stratified version that

only applies the min filter at the end of the recursive it-

erations. More details regarding the ability of PreM to



optimize graph queries has been demonstrated in [28,

16], where efficient techniques for testing the validity of

PreM for the applications at hand were also discussed.

Regarding techniques for proving PreM, the interested

readers can find more details in [77,17]. However, the

PreM property only applies to constraints with min

and max aggregates. This is not the case for sum, count

(when represented in unary as a collection of facts),

average and other aggregates. To resolve such issues,

we need to propose new approaches to deal with them

in unstratified programs containing such aggregates.

4.3 Extension to Completed Aggregates

4.3.1 Motivation and Definition

While extrema could be viewed as constraints premap-

pable into recursive queries, allowing count, sum, and

average in recursive computations requires a differ-

ent approach. Thus, we propose an approach that ex-

ploits the incremental computation by which these ag-

gregates can be defined in Datalog. For instance, the

computation of average consists of two phases: in the

first phase, monotonic rules are used to compute a pair

〈num, total〉 by increasing the num by 1 (as in contin-

uous count) and adding to the current sum the new

value (as in continuous sum). This monotonic phase

completes when all elements in the set have been pro-

cessed, In the second phase, the maximum value of

num and the value of total associated with it are ex-

tracted and the ratio of the latter over the former is

returned as the answer. Thus, the decision that the

first phase is completed enables us conclude that the

current count is the max value of num, and this repre-

sents the quintessential non-monotonic decision taken

in the implementation of such aggregates. But when

the cardinality of the set involved is known or can be

pre-computed before we enter into the recursive compu-

tation, this information could simply be passed to the

fixpoint computation that follows and used to set the

value of num whereby no non-monotonic decision will

be taken. Moreover, whether we actually pre-compute

num or let it be derived as the final step in the recur-

sive computation the results are the same and they can

be computed efficiently by a semi-naive fixpoint. Thus

the average aggregate expressed using monotonic con-

structs can be used freely in recursion. Moreover, to

compute the sum we can still compute the pair 〈num, total〉
in order to achieve monotonicity, but then only return

the value of total as the result. Remarkably, this Pre-

Countable Cardinality (PCC) condition occurs in many

programs of great practical significance of Datalog [76].

We will now formally provide the PCC idea in Defini-

tion 3.

Definition 3 (PCC) Let R be a recursive relation in

Datalog, and let δRi denote the delta values of R ob-

tained at each iteration i during the SN fixpoint com-

putation. Then R satisfies the PCC condition when:

(i) The cardinality of δRi is non-zero and is the same

for each i;

(ii) The cardinality of δRi can be known ahead of

time before the SN fixpoint computation begins and

stays unchanged.

4.3.2 Semantics provided by PCC

As previously described, the non-monotonic aggregate

sum can be computed by incrementally computing the

pair 〈num, total〉 and returning the total value associ-

ated with the num value that is equal to the cardinality

pre-computable before the recursive computation. In this

way, the computation process will involve only mono-

tonic constructs, since the incremental computation of

continuous count and sum is monotonic. In other words,

the program with sum aggregates in recursion is equiva-

lent to stratified programs where the cardinality is pre-

computed at a lower stratum, which precedes the SN

computation of the equivalent program that only use

monotonic constructs2. Observing that similar proper-

ties also hold for other aggregates, we can summarize

our finding in Theorem 1, which is a summary of the

high level idea of [76].

Theorem 1 If the PCC property is satisfied by a re-

cursive Datalog program P that uses sum, avg and count

in recursion, then there exists an equivalent aggregate-

stratified program which defines its formal semantics.

4.3.3 Semantics of Programs for ML

We can thus show that the semi-naive fixpoint compu-

tation of Query 2 indeed realizes the formal semantics

defined above. In fact, the first J in Query 2 coincides

with the successive steps of the semi-naive fixpoint, and

the cardinality of arguments of the sum aggregate re-

mains the same at each step, and can in fact be pre-

computed before the recursive computation starts. Here

the value n is the cardinality of training set, i.e. vtrain.

In the process of recursive computation, a step of the

semi-naive computation terminates after processing ex-

actly the same number n of input values for each value

of J. Thus the SN computation for Query 2 realizes

2 If this program contains min and max, a third stratum
is needed on top of these two to defined its formal stratified
semantics.



the formal fixpoint semantics of the equivalent strati-

fied where the cardinality is pre-computed before the

semi-naive fixpoint computation begins.

Then we formally conclude these findings with the

following Theorem 2. We can use the similar techniques

proposed in [28] for testing PreM to enable automati-

cally testing of the PCC property.

Theorem 2 The results produced by Query 2 are equiv-

alent to the same results produced with a query that is

stratified with respect to the sum aggregate.

5 Query Evaluation

In this section, we introduce the query evaluation and

optimization techniques that enabled the superior per-

formance of our framework. In this paper, we focus on

providing a detailed description of their implementation

on BigDatalog along with the extensive experiments

that prove their effectiveness. However, it is clear the

techniques and their promising performance can be gen-

eralized to different shared-nothing Datalog systems.

We first briefly introduce the background knowledge

of BigDatalog system which our framework is built on

(Section 5.1). Then we introduce the new techniques to

deal with complex recursions (Section 5.2) and query

execution (Section 5.3).

5.1 The BigDatalog System

BigDatalog [59] is a Datalog language implementation

on Apache Spark. It supports relational algebra, aggre-

gation and recursion, as well as a host of declarative

optimizations. BigDatalog uses and extends Spark SQL

operators, and also introduces several operators imple-

mented in the Catalyst framework so that its planning

features can be used on the recursive plans of Datalog

programs.

The input processed by the BigDatalog compiler in-

cludes the Data Definition Language (DDL) to spec-

ify the database schema and the Datalog program for

expressing particular applications. The compiler ana-

lyzes the input query and creates a logical plan from it.

To resolve recursion, the compiler recognizes recursive

tables and switches from the task of building the op-

erator tree for non-recursive queries to the specialized

task required by recursive queries. Thus after recogniz-

ing the recursive references, the compiler produces the

Predicate Connection Graph (PCG) [7] to identify the

dependency of relations within the program.

The logical plan maps the PCG to a tree contain-

ing standard relational operators and recursion opera-

tors. Such recursion operators are used in the logical

and physical plan to process the recursive query. The

plan actually consists of the following two parts: (i)

The base plan specifies the base case of the recursion

which starts the iterations; and (ii) The recursive plan

defines behaviors within each iteration. In this process,

the aggregates and group-by columns are automatically

identified for each sub-query.

The physical plan is generated by analyzing the log-

ical plan with the Spark SQL analyzer and applying

rules defined in the optimizer. The BigDatalog opera-

tors use Spark SQL row type much in the same way

in which Spark SQL uses the standard relational op-

erators [59]. In order to support recursion, our system

introduces specialized recursion and shuffle operators

into the physical plan. The proper settings for shuffle

operators is identified by calling on Catalyst optimizer

of Spark SQL. Finally, the query plan is executed by

the Spark engine using the RDDs and transformation

operators such as distinct, union and subtract.

Fig. 2 Dependency between Tables in Query 3.

5.2 Supporting Complex Recursions

5.2.1 Challenges

Compared with the simpler applications now supported

by BigDatalog, such as those discussed in [78,59], ML

applications require much more complex recursive queries

than those discussed in [78,59]. This is illustrated by the

dependency graph between the four relations of Query 3

shown in Figure 2. We can see that the plan involves

two kinds of complex recursions:

– Mutual recursion occurs when multiple recursive re-

lations rely on each other to compute the result. For

example, in rules r3,2 through r3,4, the recursive rela-

tions model, gradient and predict rely on each other

and thus create a cycle which denotes a mutual re-

cursion in Figure 2.
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– Non-linear recursion means that there are more than

one recursive relation in the body of a rule. For

example, rule r3,2 involves two recursive relations

model and gradient.

By analyzing the PCG, the compiler recognizes these

two kinds of recursion and marks the rules with spe-

cial tags. These tags identify the particular recursion

types and the different techniques used to process them,

which are described next.

5.2.2 New Recursion Operator

To support mutual recursion, we define a special recur-

sion operator named Mutual Recursion Operator (MRO).

It provides a major extension to the basic Recursion

Operator (RO) of BigDatalog that cannot be used for

mutual recursion since it only allows one recursive rela-

tion in the recursive plan. MRO instead allows mutual

references among multiple recursive relations by includ-

ing them in the recursive plan in a cascading manner.

For each set of mutually recursive relations, only one

MRO has the base plan, since the base case for other

MROs is provided by the operator that precedes them

in the plan.

Example 2 The logical plan for Query 3 is shown in Fig-

ure 3. The root of the plan is an MRO with both base

and recursive plan. The left child is the base plan with

only the vtrain relation representing rule r3,1, which

provides the base case of the mutual recursion. The

right child is the recursive plan representing rules r3,2
through r3,4. Each MRO represents a rule within the

mutual recursion. We can see that all MROs belonging

to the recursive plan have a NULL base plan (omitted

in Figure 3).

The corresponding physical plan is shown in Fig-

ure 4. It consists of operators translated from the logi-

cal plan along with the shuffle operators and their parti-

tioning information. For example, in the recursive plan,

when the join between recursive relations model and

gradient is computed, both operands must be shuffled

according to their join keys J and C. The recursive

plan in Figure 4 also shows that this join operation is

followed by two more joins, each of which requires two

shuffle operations. Therefore, a total of six shuffle op-

erations is performed at each iteration.
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Fig. 4 Physical Plan of Query 3

5.2.3 Distributed Semi-naive Evaluation

To evaluate the program in a distributed environment,

the physical plan assigns each MRO to the master node

where it executes and becomes responsible for driving

the distributed query evaluation. The most important



step is the scheduling of shuffle operators that are in-

jected between successive steps of the physical plan pre-

siding to the distributed evaluation. The shuffle oper-

ators are used to re-partition the dataset in all cases

where the output produced by an operator is different

from that of the operator using it as input according

to the execution plan. Then the BigDatalog engine uti-

lizes fixpoint computation to drive the iterative evalua-

tion process using the distributed version of semi-naive

(DSN) evaluation.

The execution of DSN in the MapReduce frame-

work requires the recursive relations and base relations

within one stage to be co-partitioned on a given key

K. After that, the execution goes through Map and

Reduce stages. Results of the current iteration are gen-

erated in the Map stage, while the new delta and the

relations needed in the next iteration are generated in

the Reduce stage. Algorithm 2 describes the process

in more details. The algorithm first defines two auxil-

iary functions to specify the Map (line 3-5) and Reduce

(line 6-10) stages, respectively. In the map stage, the

join operation between base and delta relations on the

specified join key K is performed on each mapper gen-

erating the intermediate results that are allocated to

reducers (line 4-5). Here we can also perform selection

or projection operations based on the requirement of

the Datalog program, which is denoted as F . In the re-

duce stage, the distributed semi-naive evaluation is then

performed. Specifically, each reducer first generates the

result D of the current iteration (line 8), which will be

emitted later (line 10). Then the recursive relation R is

updated for the next iteration (line 9).

The main process of distributed semi-naive starts

at line 11, where the recursive relation is initialized.

For each iteration, the algorithm first generates the in-

termediate results of the map stage (line 14) and then

performs shuffle operations to allocate the results to

reducers (line 15). Then the results of each iteration is

computed as the union of results produced by all reduc-

ers (line 16). The distributed semi-naive will terminate

when the fixpoint is reached (line 17) and the results of

R are returned at this point (line 18).

However, since programs for ML applications in-

clude non-linear and mutual recursion, we must revise

the evaluation approach described above. For mutual

recursion, the solution is relatively easy: One recursive

relation is regarded as the driver for DSN, e.g. the model

relation in Figure 4, while the others are evaluated by

the MROs in the recursive plan. These extensions do

not impact the techniques currently used for linear re-

cursion.

A more complex solution is required for non-linear

recursion. In fact, let X and Y denote two recursive re-

Algorithm 2: DSN Evaluation (B, K)

Input: B: The Base Relation, K: The partition key
Output: R: All results in the recursive table
begin1

// δR, δR′: Recursive relation (Delta)2

Map Stage(δR, B)3

foreach partition pair of (δR,B) do4

emit F (δR ./δR.K=B.K B)5

Reduce Stage(δR′, R)6

foreach partition pair of (δR′, R) do7

D ← δR′ −R8

R← δR′ ∪R9

emit D10

δR← Results of Base Case, R← ∅11

repeat12

i ← i + 113

MapOutput ← MapStage(δR, B)14

δR′ ← ShuffleExchange(MapOutput, key = K)15

δR ← ReduceStage(δR′, R)16

until δR == ∅ ;17

return R;18

end19

lations that are involved in a non-linear recursion since

they appear as goals in the body of the same rule. Then,

the SN evaluation should be performed by enumerating

the combination of delta relations as shown in Equa-

tion (2):

δ(X ./ Y ./ B) = (δX ./ Y ./ B) ∪
(X ./ δY ./ B) ∪
(δX ./ δY ./ B)

(2)

where B is a base relation that is optional in this pro-

cess. Therefore, unlike the case of linear recursion, we

need to keep the whole recursive relations rather than

just deltas in order to support non-linear recursion in

DSN.

To integrate this optimization into Algorithm 2, the

steps described in line 7 to 11 of it should be replaced

with the operations defined Equation (2) in order to

support non-linear recursion. Similar observations also

apply when computing aggregates in recursion.

Example 3 For the example at hand, we can see that

non-linear recursion appears in rule r3,2 of Query 3

where the model relation in the head is obtained by

joining model and gradient on the keys J and C. Then

the delta relation of r3,2 should be computed as the

union of model ./ δgradient, δmodel ./ gradient and

δmodel ./ δgradient. Therefore, as shown in Figure 4,

it keeps the whole relation instead of only the delta in

our physical plans.
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5.3 Execution

To avoid data redundancy in the process of SN eval-

uation, BigDatalog [59] extended the Resilient Dis-

tributed Datasets (RDDs) [74] in Spark and adopted

the SetRDD mechanism for executing recursive queries

in Spark. SetRDD stores distinct rows of data into a

HashSet data structure to optimize the execution of set

operators in the DSN. Thus, SetRDD is made mutable

under the union operation, which saves system memory

by not copying redundant data from up-stream RDDs.

However, this optimization may not work when dealing

with non-linear recursion: According to the mechanism

of SetRDD, when a recursive relation is referenced in

one rule, its corresponding RDD would be modified by

the set union and set difference operations. However,

in the case of non-linear recursion, a recursive relation

can be referenced more than once within each iteration.

Thus, if the recursive relation has been modified by one

rule and it is also evaluated by another rule in the same

iteration, then its RDD is no longer the same as it was

before the first evaluation, whereby the execution re-

sults would be incorrect.

To address this issue, we propose a smart strat-

egy to divide the RDDs into Intra-Iteration and Inter-

Iteration ones. Thus, for non-linear recursion, we are

able to identify when the RDDs will be re-used in the

same iteration. If so, we classify it as Intra-Iteration

RDD and treat it as immutable, i.e. we generate a new

RDD by copying data from the up-stream one. But

when an RDD will only be used in the next iteration,

we classify it as an Inter-Iteration RDD and process it

as SetRDD to save memory.

Example 4 Figure 5 shows the series of RDDs gener-

ated in the execution step of Query 3. In Query 3 the

recursive relation model is involved in the non-linear

query and we require to create both Intra-Iteration and

Inter-Iteration RDDs for it. Here the green rectangles

denote Intra-Iteration RDDs while the blue dashed ones

denote Inter-Iteration ones. We are aware that in the

ith iteration, model is updated by rule r3,2, which would

be used in the i+ 1th iteration. Meanwhile, this table

is also used in rule r3,4 that updates predict. There-

fore, the RDD of model generated by r3,2 should be

Inter-Iteration while that used in r3,4 should be Intra-

Iteration.

6 Performance Optimization

In this section, we present several techniques that have

proven to be quite effective in optimizing the perfor-

mance of our framework.

6.1 Eliminating Unnecessary Evaluation

For programs with non-linear recursions, we need to

enumerate the combinations of delta relations as shown

in Equation (2) when performing semi-naive evalua-

tions. As a result, the DSN could be significantly more

expensive than that with only linear recursions. An ex-

ample can be observed in Query 3 where the non-linear

recursion is used in r3,2 when updating the model with

the gradient computed in current iteration. The evalu-

ation would require using the whole recursive relations

model and gradient in the physical plan as shown in

Figure 4.

As our investigation progressed from formal seman-

tics to operational semantics, we find that while the

textbook techniques for SN optimization of non-linear

queries remain valid, they can be further optimized for

specific ML queries. Take again Query 3 as our exam-

ple: When adopting Equation (2) to evaluate the query,

we need to consider the items in model ./ δgradient,

δmodel ./ gradient and δmodel ./ δgradient and thus

need to include the full relations model and gradient.

However, note that the join key between model and

gradient is 〈J,Col〉. In the J th iteration, since tuples

in model are from the J − 1th iteration while those

in δgradient are from the J th iteration, we have that

model ./ δgradient = ∅ due to mismatched values

of J . Similarly, δmodel ./ gradient = ∅ also holds.

Therefore, we only need to evaluate the item δmodel ./

δgradient. As a result, the items model and gradient

can be replaced with δmodel and δgradient in the phys-

ical plan, which significantly reduces the computational



overhead and the network transmission caused by shuf-

fle operations. Since this optimization is based on the

execution process of gradient descent, it can be applied

for training all linear models with BGD and MGD. Fig-

ure 6 shows the physical plan after applying optimiza-

tions: the full relations model and gradient are replaced

with delta ones.

6.2 Join Optimization with Replica
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Fig. 6 Optimized Physical Plan

For programs with linear recursion, it is often bet-

ter to use broadcast join between the delta recursive

relation and the base relation in the physical plan by

loading the base relation into a lookup table and shared

by all workers via broadcasting. Since the overhead of

broadcasting can be amortized over the recursion, this

approach is rather effective for graph queries where

the base table is usually much smaller than the in-

termediate results [59]. However, the characteristics of

ML workloads are totally different from those of graph

queries: the size of intermediate results that partici-

pates in the computation and must be kept in memory

is independent from the number of iterations and is rel-

atively small: the size of predict is 2n where n is the size

of training data; the size of gradient and model is 2d in

both cases, where d is the dimension of a training in-

stance 3. By contrast, the base relation, i.e. the training

set, tends to be very large. Moreover, the size of base

relation always exceeds the maximum memory of a sin-

gle worker, making the broadcast join not applicable.

As a result, the broadcast joins that proved so effective

on graph queries will encounter serious problem on ML

workloads. Consequently, there would be multiple shuf-

fle operations per iteration on the base relation, causing

significant overhead for the overall performance. As pre-

viously observed, shuffle operations on the base relation

happens when the base relation is joined with recursive

ones on different keys. For example, in r3,3 vtrain must

be joined with predict on the key Id; and in r3,4 the

join key between vtrain and model becomes C. Thus

the vtrain relation will be shuffled twice.

To address this issue, our framework instead adopts

a smart-replica optimization approach that relies on

careful trade-offs between memory usage and join per-

formance. We find that the shuffle operations can be

avoided by making replicas of the base relation parti-

tioned by different keys on the same worker. Specifically,

in above example we just make two different replicas of

the vtrain relation on all workers: one is partitioned by

the key Id and the other is partitioned by C 4. Then the

former will be used in r3,3 while the latter will be used

in r3,4. The green dotted items in Figure 6 are relations

where the shuffle operations can be avoided by making

replicas of vtrain. Here the number of replica, as well the

number of shuffle operations it could save, is equivalent

to that of the different join keys the base relation gets

involved. As we can see, two shuffle operations could

be saved compared with the original physical plan in

Figure 4.

We also want to point out that the space overhead

brought by replicas is tolerable. The essence of broad-

cast join is to trade the memory for join performance.

Since the whole base relation is transmitted, the mem-

ory overhead on each worker would be the size of the

base relation. Meanwhile, the memory overhead of our

replica mechanism is the size of base table divided by

the number of workers on average. This offers similar

benefit as broadcast join does and it avoids its short-

coming of memory consumption. Furthermore, the de-

cision of making replicas can be made automatically:

The fact that the base relation need to participate in

3 The total size of intermediate results would be nJ for
predict and dJ for gradient and model. Results from older it-
erations would be dumped into disk for the sake of crash
recovery.
4 The distribution of replicas partitioned by different keys

might be different on the same worker



join operations on different keys can be recognized in

the process of formalizing the logical plan. Thus the us-

age of replicas will be decided before the actual physi-

cal plan is generated. Note that the Spark APIs cannot

make such optimizations since the program is directly

expressed in terms of physical operations.

6.3 Scheduling Optimization

As illustrated in [69], recursive queries that can be com-

piled into decomposable plans will potentially benefit

from a well-chosen partition strategy. In such cases,

the produced RDDs preserve the original partition of

input recursive table. Then the executor on the same

partition can continue to work without global synchro-

nization. Consequently, the shuffle operations could be

saved. The correctness of this property can be guaran-

teed by the replica mechanism on base relations even if

the join key will change for the next operator. The blue

dashed items in Figure 6 are the shuffle operations that

can be saved by the scheduling optimizations. For rule

r3,2, the shuffle operation can be removed since delta

of the recursive relation model can be acquired locally

for each worker. Similarly, in rule r3,4, the recursive re-

lation model comes from r3,2, which has already been

partitioned by the same key C. Therefore, the shuffle

operation on model can also be removed.

7 Discussion

In this section, we discuss the usability issues of our pro-

posed framework. Therefore, we will first raise our van-

tage point by discussing in Section 7.1 how to express

ML applications with SQL queries that are equivalent

to the Datalog ones. Then, in Section 7.2 we briefly de-

scribe how our library of Datalog queries for ML has

been fully integrated with DataFrame APIs to achieve

usability and interoperability with other Apache Spark

application libraries. Finally, in Section 7.3, we discuss

deep neural networks and the many opportunities and

challenges that our framework will encounter in such

applications.

7.1 Equivalent SQL Queries

SQL has delivered great benefits in relational DBMS

and big data platforms due to its declarative nature

and portability. We show here that SQL can support

many ML applications by providing SQL queries that

have equivalent semantics to the Datalog ones intro-

duced above. This represent an important extension

to the RaSQL language and its system [28] which sup-

ported aggregates in recursion by introducing a simple

extension in the syntax of the SQL:2003 SQL standards.

Specifically, RaSQL supports basic aggregates, i.e. min,

max, sum, count, in recursion by minimal extensions of

the Common Table Expressions (CTE) used by current

SQL standard with the basic syntax shown below.

WITH [recursive] VIEW1 (v1_column1, v1_column2, ...)

AS (SQL-expression11) UNION (SQL-expression12) ...,

[recursive] VIEW2 (v2_column1, v2_column2, ...)

AS (SQL-expression21) UNION (SQL-expression22) ...

SELECT ... FROM VIEW1 | VIEW2 | ...

The WITH RECURSIVE construct of RaSQL

The CTE starts with the keyword “WITH RECUR-

SIVE”, which is followed by definitions of the recursive

view. The view content is defined by a union of sub-

queries, which define the base table and recursive table.

This is similar to the base and recursive relations of

Datalog. Here a table is the base table if its FROM

clause definition does not refer to any recursive CTE;

otherwise it is a recursive table. The RaSQL query that

is equivalent with Query 3 is shown in Query 4.

Query 4 - RaSQL: BGD for Linear Regression

Base tables: vtrain(Id: int, C: int, V: double, Y:

double)

WITH recursive model (J, C, P) AS

(SELECT 0, vtrain.C, 0.01 FROM vtrain)

UNION

((SELECT 1+m.J, m.C, m.P+2.0/n*LR*g.G

FROM model AS m, gradient AS g

WHERE m.C = g.C and m.J = g.J),

recursive gradient(J, C, sum() AS G) AS

(SELECT p.J, t.C, (t.Y - p.YP)*t.V

FROM vtrain AS t, predict AS p

WHERE p.Id = t.Id),

recursive predict(J, Id, sum() AS YP) AS

(SELECT m.J, t.Id, m.P*t.V

FROM vtrain AS t, model AS m

WHERE t.C = m.C)),

SELECT * FROM model

Such RaSQL queries for ML applications can be com-

piled into Spark SQL operators and recursive operators

in a similar way to that discussed in Section 5. More-

over, such RaSQL queries can be encapsulated into a

library called by DataFrame operations as MLlib did.

7.2 Usability: Supporting DataFrame APIs

To improve usability and attract a wide participation

by data scientists, we further encapsulate the Datalog

queries for ML algorithms in a more elegant and suc-

cinct library using DataFrame APIs. Currently such a

library can support all queries introduced in Section 3.1.

With the help of such a library, users can express the

whole process of machine learning using the Datalog



1 val session = DatalogMLlibSession.builder()
2 .appName(”LR”) .master(”local[∗]”)
3 .getOrCreate()
4 // Import data.
5 var Vschema =
6 StructType(List(StructField(”Id”, IntegerType, true),
7 StructField(”C”, IntegerType, true),
8 StructField(”V”, DoubleType, true),
9 StructField(”Y”, IntegerType, true)))

10 var df = spark.read.format(”csv”)
11 .option(”header”, ” false”).schema(Vschema)
12 . load(”dataDTrain”)
13 // Training on the input relation df .
14 import edu.ucla.cs .wis.bigdatalog.spark.DatalogMLlib.
15 {DL LogisticRegression,

DL LogisticRregressionTransformer}
16 val lr = new DL LogisticRegression().setMaxIter(10)
17 val lrModel = lr. fit (df , session)
18 // Testing with pre−trained model.
19 var test = spark.read.format(”csv”)
20 .option(”header”, ” false”).schema(Vschema)
21 . load(”dataDTest”)
22 val lrPredict = new

DL LogisticRregressionTransformer()
23 val prediction = lrPredict.transform(lrModel, test ,

session)

Fig. 7 Snippet Code for DataFrame API: Logistic Regression

1 val session = SparkSession.builder().appName(”LR”)
2 .master(”local [∗] ”).getOrCreate()
3 // Import data.
4 var schema = StructType(List(StructField(”X1”,

IntegerType, true), StructField(”X2”, IntegerType
, true),

5 StructField(”X3”, DoubleType, true),
6 StructField(”label”, IntegerType, true)))
7 var df = spark.read.format(”csv”).option(”header”, ”

false”).schema(schema).load(”dataSTrain”)
8 // Training on the input relation df .
9 import org.apache.spark.ml.Pipeline

10 import org.apache.spark.ml. classification .
LogisticRegression

11 import org.apache.spark.ml.feature.VectorAssembler
12 val assembler = new VectorAssembler()
13 .setInputCols(Array(”X1”, ”X2”, ”X3”))
14 .setOutputCol(”features”)
15 val lr = new LogisticRegression() .setMaxIter(10)
16 val pipeline = new Pipeline().setStages(Array(

assembler, lr))
17 val lrModel = pipeline. fit (df)
18 // Testing with pre−trained model.
19 var test = spark.read.format(”csv”).option(”header”,

”false”).schema(schema).load(”dataSTest”)
20 val prediction = lrModel.transform(lrModel, test)

Fig. 8 Snippet Code: Implementation with MLlib

queries introduced above where the hyper-parameters

and data source can be specified in a similar way as

MLlib does. Next we illustrate the basic usage of our

API with a running example in Figure 7.

The example in Figure 7 expresses the process of

training a Logistic Regression classifier on the train-

ing data dataDTrain, and making prediction on the test

data, dataDTest. The two datasets are stored in a ver-

ticalized view with Vschema (Id, C, V, Y) as introduced

in Section 3.1. To make use of the Datalog programs

for machine learning, we first construct a working envi-

ronment, i.e. DatalogMLlibSession for our library of ma-

chine learning algorithm (line: 1 to 3). Then, we load

the training data to a Dataframe df. After importing the

required training and predicting functions for Logistic

Regression (line: 14 to 15), we can build executable ob-

jects for training lr (line 16) and predicting lrPredict
(line: 22). The lr object wraps all the logical rules and

required relations (e.g. parameters with default value

0) of the Datalog implementation for Logistic Regres-

sion. When initializing lr, users can exploit the built-in

functions to set the hyper-parameters that control the

maximum number of iterations, the method used for

parameter initialization, and many others. After fitting

the model to df, the lrPredict object could make pre-

dictions on the testing instances with the pre-trained

model, lrModel. In both the fitting and predicting pro-

cesses, the information of Datalog execution runtime

can be obtained by using session as an input argument,

which is same as the practice of MLlib.

For the sake of comparison, we also show how Apache

Spark MLlib will be used to implement the above exam-

ple. The snippet code is shown in Figure 8. The pipeline

of functionalities is very similar to that of our APIs; this

will make it much easier using the DataFrame APIs in

our library for those who are already familiar with ML-
lib. Although there are minor differences in the aspects

of data formatting and usage of some public functions,

e.g. transform and assembler, the expression of MLlib
and our library are very similar and both user-friendly.

7.3 Expressing Deep Learning Applications

In this section, we show that it is also possible to ex-

press deep neural network models with Datalog and

briefly discuss the opportunity to support them with

our framework. First of all, unlike linear models which

are vectors, the parameters to be learned in deep neural

networks are usually matrices, which can be expressed

as that in Section 3.1. Given a matrix M with m rows

and n columns, each element can be represented by

the row and column it belongs to and its value. Then

the matrix can be expressed with a set of quadruples

〈Id,M,N, V, Y 〉, where M and N are the row and col-

umn number, respectively. There will be no more than

m ∗ n such quadruples as we just store the non-zero

elements.



Query 5 - Feed Forward Neural Network (BGD)

r5,1 : model(0, 0, C, HC, 0.01)← vtrain( , C, ),

hidden(HC).

r5,2 : model(0, 1, HC, 1, 0.01)← hidden(HC).

r5,3 : pred(J, 0, Id, HC, sum〈HV〉)← vtrain(Id, C, V),

model(J, 0, C, HC, W),

HV = V ∗ W.
r5,4 : pred(J, 1, Id, 1, sum〈Y′〉)← pred(J, 0, Id, HC, HV),

model(J, 1, HC, 1, W),

Y′ = φ(HV) ∗ W.
r5,5 : error(J, 1, Id, HC, 1, δ1) ← ylabel(Id, Y),

pred(J, 1, Id, 1, Y′),

δ1 = 2 ∗ (Y′ − Y).

r5,6 : error(J, 0, Id, C, HC, δ0) ← error(J, 1, Id, HC, 1, δ1)

model(J, 1, HC, 1, W),

pred(J, 0, Id, HC, HV),

δ0 = W ∗ δ1 ∗ φ′(HV).

r5,7 : grad(J, 1, HC, 1, sum〈G1〉) ← error(J, 1, Id, HC, 1, δ1)

pred(J, 0, Id, HC, HV),

G1 = δ1 ∗ φ(NV).

r5,8 : grad(J, 0, C, HC, sum〈G0〉)← error(J, 0, Id, C, HC, δ0)

vtrain(Id, C, V),

G0 = δ0 ∗ V.
r5,9 : model(J1, L, Ci, Co, W)← model(J, L, Ci, Co, W

′),

grad(J, L, Ci, Co, G),

W = W′ − lr ∗ (G/n),

J1 = J + 1.

Then, Query 5 shows how to express the training

process of a feed-forward neural network with BGD.

For simplicity of presentation, we just display the train-

ing process for a two-layer neural network, with Mean

Squared Deviation as the loss function and ignore the

regularization items. We use φ to denote the activation

function and φ′ to denote its derivative. For instance,

if φ(z) = tanh(z), then φ′(z) = 1 − φ2(z). Further-

more, to simplify the query, we separate the datasets

into two relations, i.e. vtrain(Id, C, V) (the input data)

and ylable(Id, Y) (the corresponding labels). The rela-

tion hidden(HC) just contains numbers from 1 to the

number of features in the hidden layer, used to initial-

ize the relation model.

The relation model(J, L, Ci, Co, W) stores all pa-

rameters for neural networks, where each tuple denotes

the value of weight W associated with the connection

between unit Ci in layer L, and unit Co in layer L+1. I n

Query 5, we first initialize the model in r5,1 and r5,2. To

train our network, we need to do forward propagation

in r5,3 and r5,4. The activation on HV of hidden layer

is moved to r5,4 considering the sum semantics. Next,

for each record and each feature in layer 0 and 1, we

would like to compute an error term in r5,5 and r5,6 that

measures the errors each feature was responsible for in

the output generated by back propagation. Then, we

compute the desired gradients which are just the par-

tial derivatives of the model parameter and summarize

the gradients contributed by different records Id in r5,7
and r5,8. Finally, we average the summed gradient, up-

date it on the model and move to the next iteration

in r5,9. To support neural networks with more layers,

we can simply extend the query by incorporating more

rules to calculate different layers of pred, error and grad.

Actually as discussed above in Section 7.2, our frame-

work is developed in contrast with Apache Spark’s in-

herited machine learning library MLlib, which also does

not aim at supporting deep learning applications. From

above example, we conclude that it is possible to ex-

press deep learning applications with Datalog. There-

fore, exploring how to efficiently support deep learning

applications expressed by Datalog programs represents

an interesting direction for future research.

8 Experiments

8.1 Experimental Setup

Table 2 Statistics of Datasets

Name Cardinality # Features Size (GB)

URL 2,396,130 3,231,961 2.1
KDD10 19,264,097 29,890,095 4.8
KDD12 149,639,105 54,686,452 21.1
Webspam 350,000 16,609,143 23.3

8.1.1 Workloads and Datasets

We evaluate the performance of our framework on the

task of training linear models via gradient descent op-

timizers. As is stated before, we mainly focus on BGD.

But we also report the results of MGD using the method

described in Section 3.2. Specifically, we use Linear
Regression, Logistic Regression and SVM as benchmark

models in this paper.

The datasets used in the experiments are summa-

rized in Table 2, where cardinality means the num-

ber of training instances while “# Features” means

the number of dimensions in each training instance.

We conduct experiments on 4 public datasets provided

by LIBSVM [2], a popular benchmark for evaluating

linear models: URL [42] is a dataset for identifying

malicious URLs. KDD10 comes from Carnegie Learn-

ing and DataShop that was used in KDD Cup 2010.

KDD12 [31] is a CTR prediction task from KDD Cup

2012. Webspam [68] is a dataset of email spams. Cur-

rently we are focusing on training linear models to learn



from sparse datasets, which occur frequently in real-life

applications, and indeed all the above-selected datasets

are from real world scenarios. Results on dense datasets

are presented later in Section 8.6. Considering the mem-

ory available at each node and in the overall system,

the cardinality of these datasets provide a good basis

for evaluation. Besides the dataset, the memory must

hold the intermediate results and system runtime, and

the same is true for baseline systems used in our com-

parisons.

8.1.2 Baselines and Metrics

As BigDatalog is implemented on top of Apache Spark,

we mainly compare it against two Spark based competi-

tors: MLlib 2.3.0 and SystemML 1.2.0, where MLlib [47]

is the official Spark package for machine learning 5. As

MLlib comes with an implementation with MGD, we

implement BGD by setting the batch size as the car-

dinality of the training set. SystemML [9] is a state-of-

the-art ML system on top of Spark using a declarative

R-like language 6. We implement the training process

with BGD and MGD using its script language following

the official documentation. We are also aware that there

are several special-purposed machine learning systems,

including TensorFlow, PyTorch, MXNet and Petuum.

Due to the space limitation, we just select PyTorch 7 as

the representative for comparison. Other studies pub-

lished on Datalog for machine learning [43] and [35] do

not provide a good basis for comparison. This is because

simple query interfaces rather than end-to-end systems

are provided in [43] and [35], and no publicly available

implementation is available for [11].

Note that the main purpose of this work is not to

claim that the implementation of our proposed frame-

work is fundamentally more efficient than other spe-

cial purposed ML systems, or to argue that Datalog

is more suitable than the math-like syntax interfaces

have provided in other ML platforms. Instead, we aim

at demonstrating that it is possible to optimize a gen-

eral recursive query engine to achieve the competitive

or even better performance than special-purpose ML

systems in a family of ML applications.

We use execution time as the evaluation metric in

the experiments. Since BGD uses all training instances

in one iteration, the results regarding accuracy/loss are

the same for all systems. Therefore, we only report

the end-to-end query execution time for models trained

with BGD. For MGD we report the results of training

5 https://spark.apache.org/mllib/
6 https://systemml.apache.org/
7 https://pytorch.org/

loss vs. training time as it was done in many previ-

ous studies of ML systems. To ensure fairness, we allo-

cate the same number of workers/servers and sufficient

memory to guarantee the performance for different plat-

forms. We ensure that algorithms on different platforms

are equivalent in terms of workload and convergence by

configuring the implementation on all systems with ex-

act the same parameters.

In the experiments, the original LIBSVM data for-

mat can be supported by our approach and also by ML-
lib and PyTorch. For SystemML, we converted our data

format into their supported binary format following the

instructions in SystemML’s official documentation, and

we did not include this preprocessing time into the total

query time.

8.1.3 Environment

The experiments of all the four systems are conducted

on a cluster with 16 node: one node acts as the master

and other 15 nodes as workers. For the distributed com-

puting, since our Datalog framework, SystemML and

MLlib are all based on Apache Spark, they use the

bulk synchronous parallel architecture. Meanwhile, Py-
Torch runs under the parameter server architecture. All

nodes are connected with 1Gbit network. Each node

runs Ubuntu 14.04 LTS and has an Intel i7-4770 CPU

(3.40GHz, 4 core/8 thread), 32GB memory and a 1 TB

7200 RPM hard drive. Each worker node is allocated

30 GB RAM and 8 CPU cores (120 total cores) for

execution. BigDatalog is built on top of Spark 2.0 and

Hadoop 2.2. All systems are activated with in-memory

computation by default. Since hype-parameter tuning

is outside the scope of this paper, the hyper-parameter

settings are the same for all systems: the learning rate

is 10−2 and the number of iterations for BGD is 100.

8.2 End-to-end Performance

To begin with, we report the end-to-end execution time

of the three models trained with BGD. The results are

shown in Figure 9, where our approach is denoted as

Datalog. Note that some results of SystemML and Py-
Torch are denoted by the word “OOM” in red, since

they run out of memory under those settings. One thing

we would like to clarify is that for PyTorch we directly

use the GD implementation provided by the lib itself.

Nevertheless, there might be some better ways to op-

timize the implementation and avoid the OOM issue,

such as by additive gradient updates on mini-batches.

Since such optimizations on PyTorch is out of scope of

this paper, we just report results with its default im-

plementation.
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Fig. 9 Performance Comparison: Training with Batch Gradient Descent
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Fig. 10 Performance Comparison: Training with Mini-batch Gradient Descent

From the results, we can make the following obser-

vations:

Firstly, Datalog consistently outperforms the other

two Spark based systems MLlib and SystemML for all

three models. SystemML has the worst performance as

its optimizations focus on physical-level computation

within one iteration rather than the whole iterative

training process. Such results make sense since the strong

point of SystemML lies in directly computing the ML

models by matrix operations. As the bottleneck of the

training process with BGD is not computation over

large matrices but recursive gradient computation, Sys-
temML cannot benefit from above optimizations. ML-
lib outperforms SystemML because it adopts a tree ag-

gregate mechanism to accelerate the gradient compu-

tation in distributed environment; however Datalog is

approximately 2X to 4X faster than MLlib. Our prelim-

inary investigations suggest that performance gains of

our approach over MLlib come from higher-level logi-

cal optimizations, which were particularly successful in

reducing shuffle operations.

Secondly, the performance of Datalog is comparable

with that of PyTorch, one of the most popular special-

purposed ML systems. On some datasets, such as the

KDD10 dataset, Datalog even outperforms PyTorch by

up to 2 times. This must be credited to our system’s

success in optimizing each computation step from plan-

ning to execution to fully harness the potential of the

Spark engine. We also see that PyTorch requires much

more memory: it runs out of memory on the large datasets

KDD12 and Webspam. A possible reason for that is

that PyTorch needs additional memory to make a replica

of gradients and parameters for each thread rather than

each node. For large sparse dataset, PyTorch will run

out of memory when broadcasting after an iteration.

Lastly, the advantage of Datalog over other competi-
tors is more obvious on larger datasets. On the small-

est dataset URL, the performance is comparable for

all four systems. When it scales up to KDD10, ML-
lib and SystemML are approximately 2X and 5X slower

than Datalog, respectively. For example, on the KDD10

dataset, the total execution time for Linear Regression
on PyTorch, MLlib, and SystemML is 3889, 4689, 11351

seconds, respectively. While Datalog only takes 2338

seconds. We believe that is because, for small datasets

the computation time of each iteration is relatively short.

As a result, the communication time between work-

ers will dominant the end-to-end execution time and

the difference between different systems is not obvious.

Meanwhile, for larger dataset the computation time be-

comes the bottleneck and thus the effect of our opti-

mizations is more obvious. Finally for KDD12, Sys-
temML runs out of memory and Datalog outperforms

MLlib by 5X. A possible reason for which SystemML
runs out of memory could be that it conducts the ML

application in the way in which matrix operations are



optimized. Thus, even for sparse datasets, SystemML
requires large volumes of memory to keep the interme-

diate results.

Figure 11 shows the results of adding L2 regular-

ization on the three ML applications for KDD10, re-

spectively. We can see that the trend of results with

regularization is similar to that in Figure 9.
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Fig. 11 Performance Comparison with L2 Regularization

8.3 Results for Mini-batch GD

Next, we report the experimental results on training the

three ML models with the MGD optimizer. We set the

batch size as 8,192 empirically. Due to space limitations,

we only report the results on KDD10 dataset. On the

other datasets without memory issues, the results have

similar trends. For experiments with MGD, we do not

fix the number of iterations. Instead, the training pro-

cess will terminate when convergence is reached (when

the difference of training losses between two adjacent

iterations is smaller than 10−3 or the maximum 25,000

iterations is reached).

As we can see from Figure 10, PyTorch has the best

performance under most settings. This is not surprising

since specialized ML systems have implemented several

optimizations and improvements designed specifically

for training with MGD. As it has been widely shown in

previous studies, BGD is more suitable for ML systems

based on relational engines, e.g. Spark and relational

DBMS. Note that the main contribution claimed in this

paper is to propose a purely declarative ML framework

by taking advantage of the characteristics of Datalog,

rather than implementing an ML system that provides

richer and more efficient ML functions than other sys-

tems. Consequently, the main purpose of evaluation is

to show that with the aggregates-in-recursion mecha-

nism supported by sound optimization techniques, the

ML workloads can be expressed by Datalog and its im-

plementation can outperform other Spark based sys-

tems. Remarkably, our implementation of MGD with

trade-off did show very promising results in the qual-

ity of training. The training loss that Datalog achieves

at convergence for Linear Regression, Logistic Regression
and SVM is 0.418, 0.372 and 0.376, respectively; while

that of PyTorch is 0.407, 0.363 and 0.365, respectively.

Moreover, we can see that Datalog converges faster

than the other two Spark-based competitors while achiev-

ing similar training loss as PyTorch. For example, for

the SVM model, Datalog requires only about 5,000 it-

erations to converge with 530 ms per iteration. Mean-

while, the results for SystemML is about 6,000 iterations

with 1,048 ms per each iteration. Finally, MLlib had not

reached converge after 20,000 seconds, which is beyond

the x-axis of Figure 10. A reason MLlib performs worst

here might be that it does not exploit all the MGD

optimization steps used in SystemML.

8.4 Scalability

In a final set of experiments, we test the performance

of BGD on different systems when scaling up the size

of the training data. For that we used the synthetic

datasets proposed in the previous study [65]. We vary

the size of the dataset from 10GB to 40GB. Other de-

tailed settings of the synthetic data are the same as

that discussed in Section 6. Using the charts shown in

Figure 12, we discover that Datalog achieves nearly lin-

ear scalability for all three ML algorithms trained with

BGD. This demonstrates the great potential of apply-

ing our approach to the workloads generated by larger

training datasets.

Furthermore, we can also observe that Datalog con-

sistently outperforms MLlib and SystemML for increas-

ing cardinalities of the training sets. For example, for

the Linear Regression model, Datalog outperforms ML-
lib by 2X to 6X and outperforms SystemML by up to

one order of magnitude. Note that when the size of the

dataset exceeds 20GB, PyTorch and SystemML run out

of memory. Thus many data points are missing for these

systems in the figures. This further demonstrates the

advantage of our framework over other Spark-based ML

systems. Moreover, our Datalog also achieves compara-

ble performance with the special-purposed ML system

PyTorch in scalability.

8.5 Evaluate Optimization Techniques

To measure the effectiveness of each optimization pro-

posed in Section 6, we use the Datalog programs to
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Fig. 12 Scalability

train Linear Regression (Linear), Logistic Regression

(Logistic) and SVM with BGD on a synthetic dataset.

The data generator used here is the one proposed in a

previous experimental study for ML applications [65].

We use the option of sparse data with density 1.67×
10−6. The total size of training set is 40 GB. The train-

ing process of BGD is conducted over 100 iterations.

Table 3 Non-Linear Recursion Optimization

Time (s) Linear Logistic SVM
w/ elimination 7196.4 7582.9 6814.6
w/o elimination 10358.1 11319.5 10166.7

The effect of eliminating unnecessary evaluations

(Section 6.1) are shown in Table 3. The results show

that this optimization for the SN evaluation of non-

linear recursive programs for ML is quite substantial,

which achieves up to about 1.5× performance gain. This

is hardly a surprise given that the full relations are re-

placed by the delta ones at every iteration of the SN

computation.

Table 4 Effect of Replica

Time (s) Linear Logistic SVM
w/ replica 7196.4 7582.9 6814.6
w/o replica 22664.9 26312.3 20660.0

The effects of applying the replica mechanism (Sec-

tion 6.2) are shown in Table 4. We can see that with

the help of replica mechanism, it achieves a performance

gain of 3X to 3.4X. This underscores the considerable

amount of shuffle operations that are removed from

all iterations because of our carefully designed replica

mechanism.

Table 5 Effect of Scheduling Optimization

Time (s) Linear Logistic SVM
w/ optimization 7196.4 7582.9 6814.6
w/o optimization 7961.0 8339.2 7719.7

Table 5 shows the effect of scheduling optimizations

(Section 6.3). The overall performance is improved over

the un-optimized approach by approximately 1.2X. Ac-

tually the elimination of shuffle operations in r3,4 can

be done automatically once the replica mechanism is

applied. Therefore, the performance gain brought by

scheduling optimization is not so obvious compared with

the other two optimizations described above.

8.6 Results on Dense Datasets

To include the whole spectrum of datasets and make a

comprehensive evaluation, we also conduct experiments

on a dense synthetic dataset. We continue using the

synthetic datasets proposed in [65] but set the density

as 0.5. We set the cardinality of dataset as 30 GB to
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make sure that all systems will not run out of memory 8.

8 Note that in previous experiments with sparse dataset,
SystemML will run out of memory as it needs to convert the
dataset into its own data format, which would be much larger
than the original sparse dataset as it might add some infor-
mation to complement the omitted zero-dimensions



There is no doubt that PyTorch has much better per-

formance than Datalog, MLlib and SystemML on dense

data since it is optimized for supporting deep learn-

ing models, which involve many computations between

dense matrices. Therefore, here we only show the results

of comparing with the other two Spark based systems

SystemML and MLlib.

The results are shown in Figure 13. We can see that

Datalog still achieves comparable performance with Sys-
temML and MLlib. Although our proposed framework is

designed for applications with sparse vectors, it still has

reasonable performance on dense ones. Indeed Datalog-

ML is optimized for applications on sparse training

data, where the majority of dimensions are zeroes in

one training instance. For dense datasets, the bene-

fits of proposed optimizations are far from obvious and

thus the resulting performance is not as good as that

obtained in previous experiments. Therefore, we have

included this last experiment to provide a more com-

prehensive and balanced view of characteristics of our

proposed framework.

9 Related Work

9.1 Datalog for Machine Learning

Previous efforts in expressing ML applications with Dat-

alog include the following ones. Borkar et al. [10] pro-

posed a declarative workflow system, which also sup-

ports ML functionalities. Bu et al. [11] developed a

Datalog query interface for it. MLog [35] provided a set

of imperative Datalog-style ML libraries over the Ten-

sorFlow system. LogiQL [43] proposed to express ML

applications with Datalog and script-like constructs.

These studies focus on using Datalog as part of the

query interface. The work describe in this paper ad-

dresses the whole spectrum of advances needed to sup-

port effectively ML applications in Datalog and other

declarative query languages such as SQL.These include

(i) formal declarative semantics for the query language,

(ii) efficient system implementations with very effective

optimization on parallel platforms, and (iii) enhance-

ments providing usability and interoperability in a data

frame environment.

9.2 Recursive Query Processing

A long stream of database research work on recursive

query processing has sought to provide formal declar-

ative semantics for the usage of aggregates in recur-

sion [23,50,22]. In particular, Ross et al. [51,52] used se-

mantics based on specialized lattices to express the use

of min, max, count and sum, while Ganguly et al. [24]

sought to optimize programs with extrema. More re-

cently, Mazuran et al. [45] showed that continuous count

and sum, are monotonic, and thus can be used freely

in recursion. Monotonic aggregates have been imple-

mented in the Datalog system named DeALS [60] and

scaled up to distributed systems [59] and multi-core ma-

chines [72]. Recently, [77] introduced the Pre-mappability

(PreM) property under which programs using min and

max in recursion are equivalent to aggregate-stratified

programs. The extension of SQL with extrema in re-

cursion based on PreM [28,67] based on PreM proved

quite effective on graph applications. New opportunities

for reducing staleness and communication costs in dis-

tributed data processing were studied in [17]. Past work

has also recognized that Datalog is well-suited for large-

scale analytical queries due to its amenability to data

parallelism and the great expressive power of its recur-

sive queries. In fact, Generalized Pivoting [55] and Par-

allel Semi-naive [58] techniques enable parallel evalua-

tion of Datalog programs. OverLog [38] and NDlog [37]

proved effective at providing declarative networking.

Systems that use Datalog to support data analytics in

distributed environments include: SociaLite [56], Log-

icBlox [6], Myria [66] and GraphRex [79]. However, the

challenges of ML applications were not tackled by these

systems. Therefore, they cannot support the queries ex-

pressed in this paper.

9.3 Large-scale Machine Learning

Supporting large-scale machine learning applications has

become a hot topic in the database community. Several

research works aim at optimizing the performance of

linear algebra, which provides a common formal repre-

sentation language for machine learning algorithms [65,

19,20,13,18]. Many previous studies focus on in-database
machine learning. The basic idea is to formalize ML

operators as optimization primitives and devise an en-

gine on top of relational DBMS to solve the ML prob-

lem using such primitives [21,53]. SimSQL [12] employs

a hybrid imperative and declarative framework to ex-

press linear models [40,41], Bayesian learning [25] as

well as deep neural networks [30]. While most previ-

ous solutions require many additional primitives, our

framework is a purely declarative one that can be re-

alized using basic constructs of Datalog, or a simple

relaxation of current SQL standards.

To take advantage of distributed data platforms,

many ML frameworks were developed over Apache Spark

as extensions. MLBase [33] proposes a declarative ML

framework by providing APIs of high level program-

ming languages. Anderson et al. [5] integrates Spark

with MPI to improve the performance of graph and ML

applications. KeystoneML [61] and Helix [70] provide

more effective pipelines for ML workload. ML4all [32]

optimizes computation of gradient descent algorithms.



PS2 [79] integrates the parameter server with Apache

Spark. Our work shows that the ML applications sup-

ported by such works can be expressed efficiently via

Datalog by generalizing the existing query optimization

and data parallelism techniques.

9.4 Machine Learning and Big Data Systems

Apache Spark [74] has been one of the most popular dis-

tributed data processing platforms which provides APIs

for relational queries, graph analytics, data streaming

and machine learning. DryadLINQ [73], REX [48] and

Naiad [46] provide effective interfaces to support large-

scale workloads with iterations. Distributed graph sys-

tems provide vertex-centric APIs for graph analytics

workloads. Typical examples include Graphlab [39],

Pregel [44] and GraphX [27].

Recently, many ML systems have emerged to ef-

ficiently support different kinds of ML algorithms in

distributed environments. The parameter server archi-

tecture [34] opens up a new pathway to distributed

model training. Examples adopting parameter servers

include PyTorch [62], TensorFlow [3], Petuum [71] and

MXNet [14]. SystemML [9] is a declarative ML frame-

work with plan optimizations on top of Apache Spark.

LMFAO [54] aims at optimizing the analytic workloads

with batched aggregation, including the Linear Regres-

sion queries. Ray [49] provides a unified interface that

supports multiple tasks and settings.

10 Conclusion

This paper has presented a powerful, declarative ML

framework on top of Apache Spark with Datalog query

interfaces. Thanks to the great expressive power of Dat-

alog, users can write queries to express a series of ML

algorithms trained by gradient descent optimizers with-

out involving new constructs. The power of allowing

aggregates in recursive Datalog programs is illustrated

by the fact that it can be used for both expressing ad-

hoc queries, and for producing a library of ML func-

tions, i.e., a task for which procedural languages are

normally required. We formally demonstrated that the

training process expressed with Datalog programs has

formal semantics by showing the Pre-Countable Car-

dinality property. Then, we proposed several planning

and optimization techniques to efficiently support the

evaluation of Datalog programs with complex recur-

sions, which are essential to support ML applications.

We also provided an equivalent SQL-based implemen-

tation with a very succinct syntax based on current

SQL standard. Experiments on large-scale real world

benchmarks demonstrated the superiority of our pro-

posed framework over existing ML systems.

As future work, we plan to extend our framework to

cover more machine learning algorithms, such as deep

neural networks. Besides, we also plan to extend our

system to GPU settings and further optimize the per-

formance.
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