
SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

A Transformation-based Framework for
KNN Set Similarity Search

Yong Zhang Member, IEEE , Jiacheng Wu, Jin Wang, Chunxiao Xing Member, IEEE

Abstract—Set similarity search is a fundamental operation in a variety of applications. While many previous studies focus on threshold
based set similarity search and join, few efforts have been paid for KNN set similarity search. In this paper, we propose a
transformation based framework to solve the problem of KNN set similarity search, which given a collection of set records and a query
set, returns k results with the largest similarity to the query. We devise an effective transformation mechanism to transform sets with
various lengths to fixed length vectors which can map similar sets closer to each other. Then we index such vectors with a tiny tree
structure. Next we propose efficient search algorithms and pruning strategies to perform exact KNN set similarity search. We also
design an estimation technique by leveraging the data distribution to support approximate KNN search, which can speed up the search
while retaining high recall. Experimental results on real world datasets show that our framework significantly outperforms
state-of-the-art methods in both memory and disk based settings.

Index Terms—Similarity Search, KNN, Jaccard, Indexing

F

1 INTRODUCTION

Set similarity search is a fundamental operation in a variety of
applications, such as data cleaning [7], data integration [20], web
search [3], near duplicate detection [26] and bioinformatics etc.
There is a long stream of research on the problem of set similarity
search. Given a collection of set records, a query and a similarity
function, the algorithm will return all the set records that are
similarity with the query. There are many metrics to measure
the similarity between two sets, such as OVERLAP, JACCARD,
COSINE and DICE. In this paper we use the widely applied
JACCARD to quantify the similarity between two sets, but our
proposed techniques can be easily extended to other set-based
similarity functions. Previous approaches require users to specify
a threshold of similarity. However, in many scenarios it is rather
difficult to specify such a threshold. For example, if a user types
in the keywords “New York, restaurant, steak” in a search engine,
he or she may intend to find a restaurant that serves steak. Usually,
the users will pay more attention for the results which rank in the
front, say the top five ones. In this case, if we use threshold-based
search instead of KNN similarity search, it is difficult to find the
results that are more attractive for users.

In this paper, we study the problem of KNN set similarity
search, which given a collection of set records, a query and a
number k, returns the top-k results with the largest JACCARD

similarity to the query. We will use “KNN search” for short in
the paper without ambiguity. As is known to all, the problem of
similarity search is Orthogonal Vectors Problem hard to solve [2].
So it is necessary to devise efficient algorithms to improve the per-
formance for practical instances. There are already some existing

• Y. Zhang, J. Wu and C. Xing are with RIIT, TNList, Institute of Internet
Industry, Dept. of Computer Science and Technology, Tsinghua University,
Beijing, China. Email: {zhangyong05,xingcx}@tsinghua.edu.cn, wu-
jc18@mails.tsinghua.edu.cn;

• J. Wang is with Computer Science Department, University of California,
Los Angeles. Email: jinwang@cs.ucla.edu

approaches for threshold based set similarity search and join [3],
[7], [14], [24], [26], one straight forward solution is to extend
them to support KNN search as following. This can be done by
initializing the similarity threshold as 1 and decreasing it by a
fixed step (say 0.05) every time. For each threshold, we apply
existing threshold-based approaches to obtain the similar records.
This step is repeated until we obtain k results. However, this
simple strategy is rather expensive as we need to execute multiple
search operations during enumeration. Besides, as there is infinite
number of thresholds, it is difficult to select a proper value of step.
A large step will result in more than k results, which include many
dissimilar records; while a small step will lead to more search
operations and thus bring heavy overhead. There are also some
previous studies on the KNN similarity search with edit distance
constraint [8], [22], [23], [27] on string data. They adopt filter-and-
verify frameworks and propose effective filtering techniques to
avoid redundant computing on dissimilar records. As verifying the
edit distance between two strings requiresO(n2) time, they devise
complex filters to reduce the number of verifications. However, as
the verification time for set similarity metrics is just O(n), it is
not proper to adopt such techniques for edit distance to support
our problem due to their heavy filter cost. Similar phenomenon
has also been observed in a previous study: in the experimental
study of exact set similarity join [16], it reports that the main costs
are spent on the filtering phase, while the verifications can be
done efficiently. Xiao et al. [25] studied the problem of top-k set
similarity join. It is not efficient to extend it to support our problem
because its optimizations are made based on the problem setting
that the index is constructed in an online manner. For our KNN
search problem, we need to build the index ahead of time before
the search begins. Based on above discussions, we find it is not
efficient to directly extend the previous approaches for threshold-
based similarity search and join to support KNN similarity search.
Zhang et al. [30] proposed a tree-based framework to support both
threshold and KNN set similarity search. It constructs index by
mapping set records into numerical values. In this process, there

will be a great loss of useful information and lead to poor filter
power.

To address above issues, we propose a transformation based
framework to efficiently support KNN set similarity search. Mo-
tivated by the work of word embedding [17] in the area of
natural language processing, we transform all set records with
variant lengths to representative vectors with fixed length. By
carefully devising the transformation, we can guarantee that the
representative vectors of similar records will be close to each other.
We first provide a metric to evaluate the quality of transformations.
As achieving optimal transformation is NP-Hard, we devise a
greedy algorithm to generate high quality transformation with
low processing time. Next we use a R-Tree to index all the
representative vectors. Due to the properties of R-Tree, our work
can efficiently support both memory and disk based settings. Then
we propose an efficient KNN search algorithm by leveraging the
property ofR-Tree to prune dissimilar records in batch. We further
propose a dual-transformation based algorithm to capture more
information from the original set records so as to achieve better
pruning power.

Moreover, as in many situations it is not required to return
the exact KNN results, we also propose an approximate KNN
search algorithm which is much faster than the exact algorithm
and with high recall at the same time. To reach this goal, we devise
an iterative estimator to model the data distribution. We evaluate
our proposed methods using four widely used datasets, on both
memory and disk based settings. Experimental results show that
our framework significantly outperforms state-of-the-art methods.

To sum up, the contribution of this paper is as following:
• We propose a transformation based framework to support the

problem of KNN set similarity search for practical instances.
We devise an effective greedy algorithm to transform set
records to fixed length vectors and index them with a R-Tree
structure.

• We propose an efficient KNN search algorithm by lever-
aging the properties of R-Tree. We further devise a dual-
representation strategy to enhance the filtering power.

• We also design an approximate KNN search algorithm by
leveraging the statistical information to model data distri-
bution. Then we build an iterative estimator to improve the
search performance.

• We conduct an extensive set of experiments on several real
world datasets. Experimental results show that our framework
outperforms state-of-the-art methods on both memory and
disk based settings.

The rest of the paper is organized as following. We discuss
related work in Section 2. We formalize the problem definition in
Section 3. We introduce the transformation mechanism and index-
ing techniques in Section 4. We propose the exact KNN search
algorithm and pruning strategies in Section 5. We introduce the
iterative estimation techniques and approximate KNN algorithm
in Section 6. We provide experimental results in Section 7. Finally
the conclusion is made in Section 8.

2 RELATED WORK

2.1 Set Similarity Queries

Set similarity queries have attracted significant attentions from
the database community. Many previous studies adopted the filter-
and-verification framework for the problem of set similarity join.
A comprehensive experimental survey is made in [16]. Chaudhuri

et al. [7] proposed prefix filter to prune dissimilar records without
common prefix, which is followed by a series of related works. Ba-
yardo et al. [3] improved prefix filter by adopting a proper global
order of all tokens. Xiao et al. [26] devised the positional filter to
further reduce false positive matchings. Vernica et al. [20] devised
a parallel algorithm for set similarity join based on the idea of
prefix filter. Deng et al. [9] proposed a partition based framework
to improve filter power. Wang et al. [24] utilized the relations
between tokens and achieved state-of-the-art performance in exact
set similarity join.

There are also some all-purpose frameworks that can support
multiple operations as well as set similarity metrics. Li et al. [14]
proposed Flamingo, an all-purposed framework for similarity
search and join under various similarity metrics. Behm et al. [5]
extended it to disk-based settings. Zhang et al. [30] proposed a
tree based index structure focusing on exact set similarity search
problems.

2.2 KNN Similarity Search
KNN similarity search is an important operation which is widely
used in different areas, such as road network [32], graph data [13]
and probabilistic database [18]. To the best of our knowledge, no
prior study focused on specifically improving the performance of
KNN set similarity search except the all purpose frameworks [14]
and [30]. Xiao et al. [25] studied the problem of top-k set similarity
join, which specified the threshold ahead of time and constructed
index in an on-line step. This is different from the KNN similarity
search problem, which calls for off-line index construction and the
ability to support any threshold.

There are several previous studies about string KNN similarity
search with edit distance constraint. Yang et al. [27] utilized sig-
natures with varied length to make a trade-off between filter cost
and filter power. Deng et al. [8] devised a trie-based framework
to compute the edit distance in batch. Wang et al. [23] designed a
novel signature named approximate gram to enhance filter power.
Wang et al. [22] proposed a hierarchical index to address both
threshold and top-k similarity search. Zhang et al. [31] proposed
Bed-Tree, an all purpose index structure for string similarity
search based on edit distance. Due to the high cost of verifying
edit distance, these methods focused on improving the filter power.
However, as the cost of verifying set based similarity metrics is
much lower, adopting such filter techniques can lead to heavy filter
cost which can even counteract the benefit brought by them.

2.3 Locality Sensitive Hash
Locality Sensitive Hash(LSH) is an effective technique for simi-
larity search in high dimensional spaces [11]. The basic idea is to
find a family of hash functions with which two objects with high
similarity are very likely to be assigned the same hash signature.
MinHash [6] is an approximate technique for JACCARD similarity.
Zhai et al. [29] focused on approximate set similarity join for
lower thresholds. Sun et al. [19] addressed the problem of c-
approximate nearest neighbor similarity search, which is different
from our problem. Gao et al. [10] devised a learning based method
to improve the effectiveness of LSH. LSH based techniques are
orthogonal to our work and can be seamlessly integrated into our
proposed framework.

3 PROBLEM DEFINITION

In this paper, we use JACCARD as the metric to evaluate
the similarity between two set records. Given two records X
and Y , the JACCARD similarity between them is defined as

JACCARD(X,Y) = |X∩Y |
|X∪Y | , where |X| is the size of record

X . The range of JACCARD(X,Y) is [0, 1]. Here in this work,
we assume all the set records are multi-sets, which means that
duplicate elements in each set are allowed. Next we give the
formal problem definition in Definition 1.
Definition 1 (KNN Set Similarity Search). Given a collection

of set records U and a query Q, the KNN Set Similarity
Search returns a subset R ⊆ U such that |R| = k and for
∀X ∈ R and Y ∈ U − R, we have JACCARD(X,Q) ≥
JACCARD(Y,Q).

Example 1. Table 1 shows a collection of records. Suppose query
Q = {x1, x3, x5, x8, x10, x12, x14, x16, x18, x20}, and k =
2. The top-2 results are {X5, X6} because the JACCARD

similarity between Q and the two records are 0.750 and 0.692,
respectively. And the JACCARD similarity for other records are
no larger than 0.643.

TABLE 1
A Sample Dataset of Set Records

ID Record
X1 {x1, x2, x3, x5, x6, x7, x9, x10, x11, x18}
X2 {x1, x2, x3, x4, x5, x6, x7, x8, x9, x12, x13, x14, x19}
X3 {x1, x2, x4, x5, x6, x7, x8, x10, x11, x13, x16, x17}
X4 {x1, x3, x4, x7, x8, x9, x11, x13, x14, x17, x20}
X5 {x1, x3, x5, x8, x10, x12, x14, x15, x18, x19, x20}
X6 {x2, x3, x5, x8, x9, x10, x12, x14, x15, x16, x18, x20}
X7 {x2, x4, x7, x10, x11, x13, x14, x16, x17, x19, x20}
X8 {x4, x5, x6, x8, x9, x10, x11, x12, x14, x19, x20}

4 TRANSFORMATION FRAMEWORK

In this section, we propose a transformation based framework
to support KNN set similarity search. We first transform all set
records into representative vectors with fixed length which can
capture their key characteristics related to set similarity. Then we
can deduce an upper bound of set similarity between two records
by leveraging the distance between them after transformation.
As the length of representative vectors is much smaller than
that of original set records, calculating such distance is a rather
light-weighted operation. We first introduce the transformation
based framework in Section 4.1. We then prove that finding the
optimal transformation is NP-Hard and propose an efficient greedy
algorithm to generate the transformation in Section 4.2. Finally we
introduce how to organize the records into existing R-Tree index
in Section 4.3.

4.1 Motivation of Transformation
Existing approaches employed the filter-and-verify framework for
set similarity search and join. They generated signatures from
original records and organized them into inverted lists. As such
signatures can be used to deduce a bound of similarity, they make
use of these signatures to filter out dissimilar records. However,
scanning the inverted lists can be an expensive operation since
there are many redundant information in the inverted lists. For a
record with l tokens, it will appear in l inverted lists. And for a
given query Q, the filter cost will be dominated by the average
length of all records in the collection, which will result in poor
scalability. As set similarity metrics are relatively light weighted,
the filter cost could even counteract the benefits of filtering out
dissimilar records.

To address this problem, we propose a transformation based
framework that eliminates redundancy in the index structure.
Moreover, its performance is independent from the length of
records. The basic idea is that for each record X ∈ U , we

transform it into a representative vector ω[X] with fixed length
m. We guarantee such a transformation can reflect necessary
information regarding the similarity. Then we can deduce a bound
of set similarity from the distance between representative vectors.

The next problem becomes how to propose an effective trans-
formation. Previous approaches use one token as the unit for
filtering and build inverted list for each token. Then there will
be |Σ| inverted lists, where Σ is the global dictionary of all tokens
in the collection. The basic idea is to regard each token as a
signature for deciding the similarity. Then a straight forward way
is to represent each record as a |Σ|-dimension vector. However,
obviously this is not a good choice due to the large value of |Σ|.
To reduce the size, we can divide all tokens into m groups. And
we use ωi[X] to denote the ith dimension of record X . And
the cardinality of ωi[X] is correspondingly the value of the ith

dimension of the representative vector.
Formally, we group all |Σ| tokens into m groups, G =

{G1, G2, · · · , Gm}. For a record X we have ωi[X] =∑
t∈Gi

1{t ∈ X}, which is the number of tokens in X that
belong to group i. Then we can define the transformation distance
between two records by looking at the representative vectors. We
claim that it serves as an upper bound of the JACCARD similarity
as is shown in Lemma 1.

Definition 2 (Transformation Distance). Given two set records
X , Y and a specified transformation ω, we define the trans-
formation distance TransDist(ω,X, Y) between them w.r.t
representative vectors, which is:

TransDist(ω,X, Y) = 1− (
|X|+ |Y |

m∑
i=1

min(ωi[X], ωi[Y])
− 1)−1

(1)

Lemma 1. Given two set recordsX , Y and a transformation ω, the
JACCARD similarity between those two records is no greater
than the transformation distance TransDist(ω,X, Y).

Proof. See Appendix A. �

4.2 Greedy Group Mechanism

Next we will discuss how to generate an effective transformation
ω, i.e., how to transform a set record into anm-dimensional vector.
It is obvious that different divisions of groups will lead to different
tightness of the bound provided by transformation distance. As
is shown in Lemma 1, given two sets X and Y , the smaller
value

∑m
i=1 min(ωi[X], ωi[Y]) is, the closer the upper bound

is to the real value of JACCARD similarity. Following this route,
to minimize the error of estimation, for all the records X ∈ U , an
optimal transformation mechanism should minimize the following
objective:

∑
〈X,Y 〉∈U2

X 6=Y

m∑
i=1

min(ωi[X], ωi[Y]) (2)

Unfortunately, we can show that maximizing the value of Equa-
tion 2 is NP-Hard in Theorem 1.

Theorem 1. Finding an optimal transformation mechanism is NP-
Hard.

Proof. See Appendix B. �
In order to find an effective transformation, we assign tokens

into different groups by considering the frequency of each token,

Algorithm 1: Greedy Grouping Mechanism (U , m)
Input: U : The collection of set records, m: The number of

groups
Output: G: The groups of tokens
begin1

Traverse U , get the global dictionary of tokens Σ sorted2

by token frequency;
Initialize the total frequency of each group as 0;3

for each token t ∈ Σ do4

Assign t to group Gmin with minimum total5

frequency fmin;
Update Gmin and fmin;6

return G;7

end8

which is the total number of its appearance in all records in the
dataset. It is obvious that tokens with similar frequency should not
be put into the same group. The reason is that for two records X
and Y , such tokens will be treated as same ones and the value
of min(ωi[X], ωi[Y]) will not increase. As the sum of all token
frequencies is constant, we should make the total frequency of
tokens in each group nearly the same to make a larger value of
Equation 2.

Based on above observation, we then propose a greedy group
mechanism considering the total token frequency fi of each group
Gi. The detailed process is shown in Algorithm 1. We first traverse
all the records in U and obtain the global dictionary of tokens; then
we sort all tokens in the descent order of token frequency (line 2).
The total frequency of each group is initialized as 0 (line 3). Next
for each token in the global dictionary, we assign it to the group
with minimum total frequency (line 5). If there is a tie, we will
assign it to the group with smaller subscription. After assigning
a token, we will update the total frequency of the assigned group
and the current group with minimum frequency (line 6). Finally
we return all the groups.
Complexity Next we analyze the complexity of Algorithm 1.
We first need to traverse the set record with average length l̄ in
U , sort Σ, and then traverse each token in Σ. During traversing
each token, we need to find the group with the minimum total
frequency which costs log(m) using priority queue. Thus the total
time complexity is O(|U| · l̄ + |Σ| · (log |Σ|+ logm)).
Example 2. We show the example of Greedy Grouping Mecha-

nism on the data collection in Table 1 with m = 4. We first get
a global dictionary of tokens and sort all tokens by frequency
as is shown on top of Figure 1. The way to group all tokens
is according to Algorithm 1. The final result of grouping are
shown at the bottom of Figure 1.
Next for a given record X2, we map its tokens into 4 groups
according to above results: tokens x4, x6, x14, x19 are mapped
to group 1; tokens x1, x3, x5, x12 are mapped to group 2;
tokens x2, x9, x10 are mapped to group 3; no tokens are in
group 4. Then we can get the representative vector of X2

as {4, 4, 3, 0}. Actually, the representative vectors of records
from Table 1 are shown in Table 2.

4.3 Index Construction
With above techniques, each set record is represented with an m-
dimension vector. Then we index them with an R-Tree index. For
this application scenario, we do not to worry about the influence
of curse-of-dimensionality. The reason is that for our problem,

Descent Sort by Token Frequency

x14 x5 x10 x11 x20 x19 x1 x9 x8 x4 x3 x2 x7 x6 x12 x13 x16 x17 x18 x15

x11

x20

x8

x7

x16

x14

x19

x4

x6

x17

x5

x1

x3

x12

x18

x10

x9

x2

x13

x15

6 5 4 3 2

Group 1 Group 2 Group 3 Group 4

x1

x2

x3

x5

x6

x7

x9

x10

x11

x18

x6

x1 x3 x5 x18

x2 x9 x10

Group 1

Set Record X2 under Transformation

Group 2

Group 3

Group 4 x7 x11

1

4

3

2
Fig. 1. Greedy Group Mechanism

TABLE 2
Representative Vectors of Set Records

ID Vector
ω[X1] {1, 4, 3, 2}
ω[X2] {4, 4, 3, 0}
ω[X3] {4, 2, 3, 4}
ω[X4] {3, 2, 2, 4}
ω[X5] {2, 5, 2, 2}
ω[X6] {1, 4, 4, 3}
ω[X7] {4, 0, 3, 4}
ω[X8] {4, 2, 2, 3}

as we treat all the set records as bags of tokens, even if every
record is modeled as an d-dimensional data where d is the size
of global dictionary of tokens, we only need to look at the non-
zero dimensions when calculating Jaccard similarity. Therefore,
the data sparsity problem which occurs in many complex data
objects (e.g. sequence, image, video) mentioned in the previous
paper, will not seriously harm the performance of Jaccard based
similarity search.

Next we will first have a brief introduction about the properties
of the R-Tree index. The R-Tree is a height balanced index
structure for multi-dimensional data [12]. Each node in R-Tree is
corresponding to a Minimum Bounding Rectangle (MBR) which
denotes the area covered by it. There are two kinds of nodes: an
internal node consists of entries pointing to child nodes in the next
level of tree; while a leaf node consists of data entries.

Here we define the size of a node as that of a disk page. Then
we can obtain the fan out of the index, which is the number of
entries that fit in a node. The value of fan out can be set between
the maximum and some value that is no larger than the ceiling
of maximum divided by 2. The actual fan out of the root is at
least 2. Therefore, our framework can naturally support both in-
memory and disk settings. And the R-Tree also supports insert and
update operations. Similar to B-Tree, such operations eliminate
nodes with underflow and reinsert their entries, and also split

O 1 21 3 4

1

2

3

4

5
X5

X4

X1

X6

X2

X7

X3

X8

Fig. 2. An Example of R-Tree Index on Dataset in Table 1

overflow nodes. Figure 2 shows an example of R-tree that indexes
the vectors in Table 2.

The typical query supported by the R-tree is range query: given
a hyper-rectangle, it retrieves all data entries that overlap with
the region of this query. But it can also efficiently support KNN
search. We will talk about it later in Section 5.

Finally we introduce the process of constructing the index
structure. We first generate the global token dictionary and divide
them into m groups with Algorithm 1. We then transform each
record in the dataset using the generated groups by computing
ωi[X] with the tokens of X in group i. Next we adopt state-of-
the-art method [12] to index all the m-dimensional vectors into
the R-Tree structure.

5 EXACT KNN ALGORITHM

In this section, we introduce the exact KNN search algorithm
based on the index structure. We first propose a KNN algorithm
which can prune dissimilar records in batch by leveraging the
property of R-Tree index in Section 5.1. We then further improve
the filter power by extending the current transformation in Sec-
tion 5.2 and devise an optimized search algorithm in Section 5.3.

5.1 KNN Search Algorithm with Upper Bounding
The basic idea of performing KNN search on a collection of set
records is as following: we maintain a priority queueR to keep the
current k promising results. Let UBR denote the largest JACCARD

distance between the records inR to the queryQ. Obviously UBR

is an upper bound of the JACCARD distance for KNN results to
the query. In other words, we can prune an object if its JACCARD

distance to the query is no smaller than UBR. Here for R we
maintain UBR that is an upper bound of Jaccard Distance for
KNN results to the query. When searching on the R-Tree index,
we use the Transformation Distance to filter out dissimilar records;
when performing verification, we use the real JACCARD distance.
Every time when JACCARD distance is updated, we will update
UBR at the same time. With the help of index structure, we can
accelerate above process by avoiding a large portion of dissimilar
records. Given the query Q, we first transform it into an m-
dimension vector ω[Q]. Next we traverse the R-Tree index in a top
down manner and find all leaf nodes that might contain candidates
with the help of UBR. We then verify all the records in such nodes
to update R in a similar way.

The next problem becomes how to efficiently locate the leaf
nodes containing KNN results. There are two key points towards
this goal. Firstly, we should prune dissimilar records in batch

by taking advantage of R-Tree index. Secondly, we should avoid
visiting dissimilar leaf nodes which will involve many unnecessary
verifications.

We have an important observation on the nodes in an R-Tree
index regarding the transformation distance. Given a representa-
tive vector ω[Q] and a node N in the R-Tree, we can deduce a
minimum transformation distance between ω[Q] and all records in
the subtree rooted by N . This can be realized using the properties
of MBR of node N , which covers all the records in the subtree.
Then if the minimum transformation distance between ω[Q] and
the MBR of N is larger than UBR, we can prune the records in
the subtree rooted by N in batch. Here we denote the MBR of N
as BN =

∏|ω[Q]|
j=1 [B⊥j ,B>j], where B⊥j and B>j are the maximum

and minimum value of the jth dimension, respectively. We for-
mally define the query-node minimum transformation distance in
Definition 3.
Definition 3 (Query-Node Minimum Transformation Distance).

Given a record Q and a node N , the minimum transformation
distance between ω[Q] and N , denoted as MinDist(ω,Q,N),
is the distance between the vector and the nearest plane of
hyper rectangle of BN .

MinDist(ω,Q,N) = 1− (
n(ω,Q,N)

d(ω,Q,N)
− 1)−1 (3)

where

n(ω,Q,N) =
m∑
i=1

ωi[Q] + B⊥i ωi[Q] < B⊥i

ωi[Q] + ωi[Q] B⊥i ≤ ωi[Q] < B>i
ωi[Q] + B>i B>i ≤ ωi[Q]

(4)
and

d(ω,Q,N) =
m∑
i=1

ωi[Q] ωi[Q] < B⊥i
ωi[Q] B⊥i ≤ ωi[Q] < B>i
B>i B>i ≤ ωi[Q]

(5)

Next we can deduce the lower bound of JACCARD distance,
with the help of query-node minimum transformation distance.
Lemma 2. Given a record Q and a node N , MinDist(ω,Q,N)

is the lower bound of JACCARD distance between Q and any
record X ∈ N .

Proof. See Appendix C. �
Example 3. Given a query Q, and the transformation ω defined

in the previous section, we have the representative vector
ω[Q] = {1, 5, 1, 3}. Besides, the MBR of nodeR3 in Figure 3
is [4, 4] × [0, 4] × [2, 3] × [0, 4]. Therefore, we can compute
n(ω,Q,N) = 1 + 4 + 5 + 4 + 1 + 2 + 3 + 3 = 23,
d(ω,Q,N) = 1 + 4 + 1 + 3 = 9. Therefore, we will get
MinDist(ω,Q,N) = 1 − (23/9 − 1)−1 = 0.357, which is
the lower bound of JACCARD distance.

Algorithm 2 shows the process of exact KNN algorithm. First
we initialize the result set R (line 2) and use a queue Q to buffer
the intermediate results (line 3). Then we perform a breadth first
search on the R-Tree starting from the root node. Each time we
pick the node N on the front of Q which has the minimum value
of MinDist(ω,Q,N) with Equation 3. If MinDist(ω,Q,N) is
larger than UBR, we can terminate the search algorithm (line 7).
Otherwise, if N is a leaf node, we will perform verification on
all the records of N and update R, UBR accordingly; if N is
a non-leaf node, we will iteratively check N ’s children. For each
childrenNc ofN , if MinDist(ω,Q,Nc) is no more than UBR, we

R1

[1,4]×[0,5]×[2,4]×[0,4]

R4

[1,1]×[4,4]×[3,4]×[2,3]

R5

[2,3]×[2,5]×[2,2]×[2,4]

R6

[4,4]×[0,2]×[3,3]×[4,4]

R1

[4,4]×[2,4]×[2,3]×[0,3]

R2

[1,3]×[2,5]×[2,4]×[2,4]

R3

[4,4]×[0,4]×[2,3]×[0,4]

X1
{1,4,3,2}

X6
{1,4,4,3}

X5
{2,5,2,2}

X4
{3,2,2,4}

X7
{4,0,3,4}

X3
{4,2,3,4}

X8
{4,2,2,3}

X2
{4,4,3,0}

Q
{1,5,1,3}

MinDist(MBR(R3),Q)=0.357

MinDist(MBR(R1),Q)=0.091

MinDist(MBR(R2),Q)=0.091

MinDist(MBR(R4),Q)=0.250 MinDist(MBR(R5),Q)=0.167

JacDist(X5,Q)=0.250

JacDist(X4,Q)=0.688

JacDist(X1,Q)=0.667

JacDist(X6,Q)=0.308

Fig. 3. Illustration of Minimum Transformation Distance between Query and Nodes

will add it into Q (line 16). Otherwise, we can prune the subtree
rooted by it in batch. Finally we return the set R as KNN results.

Algorithm 2: Exact KNN Algorithm(T , Q, ω, k)
Input: T : The R-Tree index, Q: The given query
ω: The transformation,k: The number of results
Output: R: The KNN results
begin1

Initialize R, UBR;2

Insert the root node of T into Q;3

while Q is not empty do4

Dequeue the node N with minimum5

MinDist(ω,Q,N) from Q;
if MinDist(ω,Q,N) ≥UBR then6

Break;7

if N is leaf node then8

for each record X ∈ N do9

if JAC(X,Q) ≥ 1−UBR then10

Add X into R;11

Update UBR;12

else13

for each child Nc of N do14

if MinDist(ω,Q,Nc) ≤ UBR then15

Add Nc into Q;16

return R;17

end18
Example 4. The R-tree index for the data collection in Table 2

is shown in Figure 3. First suppose k = 2. For the given
query Q, its representative vector ω[Q] = {1, 5, 1, 3}. Then
we start from root node R1. We calculate the MinDist between
ω[Q] and the MBR for its each children node: 0.091 for R2

and 0.357 for R3. Since MinDist(ω,R2, Q) is smaller, we
first iterate on this sub-tree. So we need to add R4 and R5

into the priority queue, which stores the R-tree nodes to be
processed next and calculate the MinDist for them which are
0.250 and 0.167, respectively. Then we reach the leaf node R5

and calculate the JacDist for records X5 and X4. Meanwhile,
we need to update the UBR = 0.688. Next the algorithm will
visit R4, since we find JacDist(Q,X6) is lower than UBR

and therefore, we update UBR = 0.308. Also, we need to

remove theX4 fromR. Then the queue of candidate node only
has R3 left. However, MinDist(ω,Q,R3) = 0.357 which
is greater than 0.308. Therefore, our KNN search stops and
returns the current result. In this process, we prune the right
subtree of root node which contains four records.

Finally we show the correctness of above KNN algorithm in
Theorem 2.
Theorem 2. The results returned by Algorithm 2 involve no false

negative.

Proof. See Appendix D. �

5.2 Multiple Transformations Framework
With a single transformation, we can only reveal a facet of the
features in a set record. Therefore, the pruning power could be
weaken due to loss of information. To address this problem, we
discuss the way of utilizing multiple independent transformations
to excavate more information of data distribution.

To reach this goal, the first problem is how to construct index
and perform filtering with the help of multiple transformations.
The basic idea is that given a set of transformations Ω, for each
record X ∈ U under transformation ω ∈ Ω, we could generate
different representative vector ω[X] individually. We give an order
to Ω and assign each transformation in Ω with a number, thus we
use ωi to represent the ith transformation. Then we define the joint
representative vector under Ω by concatenating vectors generated
by different transformations ωi[X] into one vector:

⊎
Ω

[X] =

|Ω|⊕
i=1

ωi[X] (6)

where
⊕

is the operation of concatenation. And we call
⊎

Ω the
multiple transformation operation.

Therefore, with the help of joint representative vector, we
could apply multiple transformations pruning techniques.

In the phase of index construction, we first create the trans-
formation set Ω discussed above, and then map each record X
into multiple representative vector

⊎
Ω[X] and index them with

an R-tree index.
After constructing the index, we could accelerate the search

progress in the same way just as what is mentioned before by
utilizing Algorithm 2. The only difference is that we need to

replace the transformation distance and query-node minimum
transformation distance with the new distance as is shown in
Definition 4.
Definition 4 (Multiple-Transformation Distance). Give two set

records Xand Y , and the multiple transformations
⊎

Ω, the
definition of Multiple-Transformation Distance is:

TransDist(
⊎

Ω
, X, Y) = max

1≤i≤|Ω|
TransDist(ωi, X, Y) (7)

Based on Lemma 1, we could deduce that the Multiple-
Transformation Distance is also an lower bound of JACCARD

distance as is demonstrated in Lemma 3.
Lemma 3. Multiple-Transformation Distance serves as the lower

bound of the JACCARD distance.

Proof. See Appendix E. �
Example 5. Suppose we have two different pairs:

Y1 = {x1, x2, x3, x4, x5, x6, x7, x8} and
Y2 = {x9, x10, x11, x12, x13, x14, x15, x16};
Z1 = {x1, x3, x5, x7, x9, x11, x13, x15} and
Z2 = {x2, x4, x6, x8, x10, x12, x14, x16}.
Meanwhile, given two different transformation: ω1 maps
x1, x2, x3, x4 to group 1, x5, x6, x7, x8 to group 2,
x9, x10, x11, x12 to group 3 and x13, x14, x15, x16 to group
4; and ω2 maps x1, x3, x5, x7 to group 1,x9, x11, x13, x15 to
group 2,x2, x4, x6, x8 to group 3, and x10, x12, x14, x16 to
group 4. Correspondingly we could get their representative
vector under ω1 and ω2 individually.
ω1[Y1] = {4, 4, 0, 0}, ω1[Y2] = {0, 0, 4, 4},
ω1[Z1] = {2, 2, 2, 2}, ω1[Z2] = {2, 2, 2, 2};
ω2[Y1] = {2, 2, 2, 2}, ω2[Y2] = {2, 2, 2, 2},
ω2[Z1] = {4, 4, 0, 0}, ω2[Z2] = {0, 0, 4, 4}.
Therefore, we have TransDist(

⊎
Ω, Y1, Y2) = 0,

TransDist(
⊎

Ω, Z1, Z2) = 0 for both given pairs compared
with TransDist(ω1, Y1, Y2) = 0, TransDist(ω1, Z1, Z2) = 1
and TransDist(ω2, Y1, Y2) = 1, TransDist(ω2, Z1, Z2) = 0,
which shows that multiple-transformation distance is closer to
JACCARD distance than each single transformation distance.

Similarly, the Multiple-Transformation Distance can be used
in the R-Tree index to prune dissimilar records in batch. On
the basis of Query-Node Minimum Transformation Distance, we
define a similar mechanism under the multiple transformations in
Definition 5.
Definition 5 (Query-Node Minimum Multiple-Transformation

Distance). Given a multiple representative vector
⊎

Ω[Q]
and a node N, the Query-Node Minimum Multiple-
Transformation Distance between

⊎
Ω[Q] and N , denoted

as MinDist(
⊎

Ω, Q,N), is the distance between the multiple
vectors to the nearest plane of the hyper rectangle of MBR.

We could calculate MinDist(
⊎

Ω, Q,N) as the following
ways:

MinDist(
⊎
Ω

, Q,N) = max
1≤i≤|Ω|

(MinDist(ωi, Q,N)) (8)

Example 6. Given the representative vector of a query Q =
{x1, x2, x3, x4, x5, x6, x7, x8} and the MBR of node N∏8

i=1[1, 2] under multiple-transformation which combines
ω1 and ω2 mentioned in Example 5, we get ω1[Q] =
{4, 4, 0, 0} and ω2[Q] = {2, 2, 2, 2}. Based on Example 3,
we get MinDist(ω1, Q,N) = 0.6,MinDist(ω2, Q,N) =

0.0. Therefore, we could get MinDist(
⊎

Ω, Q,N) =
max{0.6, 0.0} = 0.6.

Since we get the maximum individual transformation distance
among all transformations to calculate the Query-Node Minimum
Multiple-transformation Distance, it is obvious that this distance
has almost the same property but no less than the individual
Query-Node Minimum transformation distance. It is easy to see
that the Query-Node Minimum Multiple-Transformation Distance
can be a tighter bound than that in Definition 3. We prove it in
Lemma 4.
Lemma 4. Given a record Q and a node N , MinDist(

⊎
Ω, Q,N)

is the tighter lower bound for JACCARD distance between Q
and any record X ∈ N than MinDist(ωi, Q,N),∀ωi ∈ Ω,
individually.

Proof. See Appendix F. �

5.3 Multiple Transformation based KNN Search
Although Multiple-transformation Distance can improve filter
power, the overall performance could deteriorate with a large
number of transformations. The overhead comes from several
aspects: Firstly, we need to store joint representative vector into
the index. A larger number of transformations will result in extra
space overhead. Secondly, as specified in Equation 8, we need
to calculate the Query-Node Minimum Transformation Distance
multiple times. Thirdly, it is difficult to construct multiple transfor-
mations with high quality. If two transformations are very similar,
the lower bound deduced from them will also be very close. In
this case, there will not be improvement of filter power.

Based on these considerations, we propose a dual-
transformation framework which utilizes only two transforma-
tions. Then the problem becomes how to construct them. Regard-
ing the third concern above, it is better to construct two dissimilar
transformation. Here the definition of “similar” is: for two similar
transformations, records mapped into the same group under one
transformation are in a great possibility to be mapped into the
same group under another. Then we proposed a metric to measure
the similarity between two transformations.
Definition 6 (Transformation Similarity). Give two transforma-

tions ω1 and ω2 which groups all tokens in Σ into two individ-
ual groups G1 = {G1

1 ,G1
2 ...G1

m} and G2 = {G2
1 ,G2

2 , ...G2
m},

the transformation similarity between ω1 and ω2 can be
defined as:

Q(ω1, ω2) = max
i≤m

max
j≤m

∑
t∈G1

i ∩G2
j

f(t) (9)

where f(t) represents the frequency of token t.

The transformation similarity measures how similar two trans-
formations are. The goal is trying to minimize the similarity.
However, it is very expensive to get a minimum value of this
objective function. The reason is that we need to iterate over all
possible different groupings, whose search space is exponential
with the number of tokens. One way to solve this problem is to
start from the original transformation in Section 4. Following the
similarity function in Definition 6, we construct a transformation
that is dissimilar with it. In this way, we can obtain a pair of
dissimilar transformations efficiently.

Algorithm 3 shows the process of generating dual-
transformation. In order to use the original transformation pro-
posed by Algorithm 1, we first utilize the Greedy Grouping

Algorithm 3: Greedy Multiple Grouping Mechanism (U ,m)
Input: U : The collection of set records, m: The number of

groups
Output: G,H: Two different output groups of tokens
begin1

G = Greedy Grouping Mechanism(U , m);2

Initialize = as ∅;3

for each group Gi in G do4

K ← Greedy Grouping Mechanism(Gi, m);5

Append K to =;6

Initialize the total frequency of all groups in H as 0;7

for each transformation K ∈ = do8

for each Ki ∈ K do9

Find group Hmin with minimum total10

frequency fmin with index h;
while ∃k,Kk ⊆ Hmin ∧Kk ∈ K do11

Find group Hmin with the next minimum12

total frequency;
Assign all tokens in Ki to Hmin;13

Update Hmin and fmin;14

return G, H;15

end16

Mechanism to get our first transformation G (line 2). Then we
want to create another transformation dissimilar with G from it by
traversing all groups in G to construct groups in the new transfor-
mation. For each group Gi ∈ G which also could be seen as token
set, we create transformation for it with the Greedy Grouping
Mechanism and collect all transformations into =(line 6). The
total frequency of each group in the new transformation H is
initialized as 0 (line 7). Next we traverse each transformation
K in =, and each group Ki in the current transformation K,
we assign the tokens in Ki to the group Hmin with minimum
total frequency (line 13) only if the output group Hmin has no
other tokens containing in group Kk from same transformations
K with Ki. This setting guarantees that the output group should
not contain different parts of tokens from the corresponding group
in G. Otherwise, we need to select another group with minimum
total frequency except for Hmin until the requirement is satisfied.
After assigning a token, we will update the total frequency of the
assigned group and the current group with minimum frequency
(line 14). Finally we return the output groups G,H.

Actually, we would get two dissimilar transformations from
Algorithm 3 (A running example is shown in Appendix H).
Moreover, based on Lemma 4, the filtering power of our dual-
transformation is stronger than that of single transformation.
Complexity The overall running time of Algorithm 3 consists
three parts:
• Create the first transformation G: the total time is O(|U| · l̄+
|Σ| · (log |Σ|+ logm)).

• Split each group with around |Σ|m tokens in G: it needs to call
the function Greedy Grouping Mechanismm times. The total
time is O(|Σ|+ |Σ| · logm).

• Traverse K and assign tokens with minimum total frequency
to Hmin. The total time is O(m2 logm+ |Σ|).

6 APPROXIMATE SEARCH ALGORITHM

In this section, we propose an approximate KNN algorithm which
does not return the exact KNN results but runs much faster. We
first introduce the idea of distribution aware approximation of

KNN results in Section 6.1. We then talk about how to make
the partition by leveraging the our R-Tree index in Section 6.2.
6.1 Distribution-aware Approximation
The general idea of approximate algorithm is to estimate the
KNN results by considering the distribution of data. Then we
can find the KNN results according to the “density” of data
without traversing the index. That is when performing KNN
search, we fit the given query into area which is the closest to
it and find the approximately k nearest neighbors based on the
distribution of data. To reach this goal, we partition the space
composed by all representative vectors into a collection of p
bucketsB = {b1, b2, · · · , bp}. Here we use U to denote the set of
all representative vectors for records in U and abuse the notation
of bi to represent all the records in the bucket bi. We utilize
the MinSkew [1] principle, which tries to uniformly distribute
records across all buckets. Here a bucket is defined as the MBR
that encloses all vectors belonging to it. Therefore, buckets may
overlap with each other, but one record only belongs to one bucket.

Given a query Q, we can generate the range of Q denoted as
Rr

Q which is a circle with Q as the center and r as radius. Then
under the assumption of uniform distribution, for each bucket bi ∈
B which overlaps with the range of Q, the total number of records
in the overlap area bi ∩ Rr

Q can be estimated as proportional to

the total number of records in bi, i.e., ni
|bi∩Rr

Q|
|bi| , where ni is the

number of vectors in bi.
Then the way of approximately getting KNN results is as

following: we increase the value of r from 0 incrementally and
collect the records within r distance to Q until we have ε · k.
Here ε is a tunable parameter to denote the portion of candidates
to collect. We will show its influence and settings later in the
experiments. For each value of r, we estimate the total number
of records in ∪bi ∩ Rr

Q for all buckets s.t. bi ∩ Rr
Q 6= ∅ and

regard them as candidates. If there are already ε · k records in
the candidate set, we will stop here and verify their JACCARD

similarity. Finally we will return the top-k records with the largest
JACCARD similarity among those collected results.

The next problem becomes how to partition all datasets into
p buckets. According to the principle of MinSkew, we should try
to minimize the difference between buckets. To this end, we use
the perimeter, i.e., total length of planes to evaluate the quality of
bucket bi as is shown in Equation 10:

Υ(bi) = ni

m∑
i=1

Li (10)

where a bucket can be represented by its length of planes, i.e.,
〈L1, L2, · · · , Lm〉 along each dimension. Here the meaning of
Υ(bi) is the “uniformity” of all records in bi. The larger value
Υ(bi) is, the heavier skewness bucket bi has, and correspondingly
the larger error of estimation will be. As we use the intersection
of bi and Rr

Q to estimate the KNN results, it is easy to see
that buckets with larger perimeter will lead to more errors in
estimation, which is similar to the case of node splitting in R∗-
Tree [4]. Thus the problem becomes how to build p buckets for all
records U and minimize the total uniformity of all buckets. Under
the assumption of uniform distribution [1], ni can be regarded as
a constant. Then we need to partition all records into p buckets so
that the total perimeter of all buckets is minimized.

To sum up, the goal of bucket construction is to minimize the
value of

∑
Υ(bi). However, we find that for m > 1 minimizing

such value is NP-Hard:

Theorem 3. For a collection of vectors U ∈ Rm, m > 1,
p > 1. The problem of dividing U into p buckets B =
{b1, b2, · · · , bp} with minimum value of

∑p
i=1 Υ(bi), s.t.

∀i, j ∈ [1, p], i 6= j, bi ∩ bj = ∅, Bbi ∩ Bbj could be non-
empty, is NP-Hard.

Proof. See Appendix G. �
Thus we need to make some heuristic approaches to find such

buckets. We will introduce details in the next subsection.
6.2 Iterative Bucket Construction
Next we talk about how to generate the buckets. As shown in
Theorem 3, finding the optimal partition of buckets is NP-Hard.
One way to make an approximation is to adopt the idea similar
to clustering algorithms such as hierarchical clustering. The basic
idea is to regard each record as a bucket, i.e., starting with n
buckets, and in each step we merge two buckets into one until we
obtain p buckets. Here the objective function is:

∑p
i=1 Υ(bi) =∑p

i=1 ni
∑m

j=1 Lj .
In each step, we can select the buckets to merge based on

the idea of gradient descent: we try to merge each bucket with
its neighbors and adopt the selection which can minimize above
objective function. This method will run n − p steps. For each
step, there will be O(n2) trials of merge operation. Thus the time
complexity of this strategy is O(n3).

We can see that it can be very expensive to apply above method
on the data collection since the value of n can be very large.
The reason is that we need to construct the buckets from scratch
without any prior knowledge. Recall that we have already built
the R-Tree index which tries to minimize the overlap between the
nodes. Therefore, the MBRs of R-Tree can be a good starting
point for constructing the buckets since we need to minimize
the total perimeter of the buckets. Based on this observation, we
then propose an iterative approach to construct the buckets by
leveraging the existing R-Tree index.

Given the R-Tree index T , we first traverse from the root and
locate at the first level with M (M > p) nodes. Then the problem
becomes constructing p buckets from the M nodes instead of n
records, where M << n. We adopt a similar merging based
strategy: the algorithm runs p steps and in each step we construct
a bucket. Here let P(·) denote the half perimeter of a given set of
MBRs. Let U ′ denoted the set of unassigned records; let n′ denote
the number of records in U ′. Then at the step i, the objective
function we need to minimize can be calculated as the sum of
skewness of bucket bi and that of remaining records:

Υ(bi) = ni · P(bi) + n′ · (A(U ′)

p− i
)

1
m ·m (11)

where A(U ′) is the area for MBR of the remaining records
covered by nodes which do not belong to any bucket so far.

The process of iterative bucket construction is shown in Algo-
rithm 4 (A running example is shown in Appendix H). We first
locate at the first level of T with more than p nodes (line 2). In
step i, we initialize the bucket bi with the nodeNl having left-most
MBR (line 4). Next, we try to add remaining nodes one by one
from left to right into bi and look at the value of Equation 11. That
is, we calculate the values of Υ(bi) by adding each remaining node
to bi. For each time, we add the node that leads to the smallest
Υ(bi) value to bi, and repeat. If no node addition reduces the
value of Υ(bi), the step i finishes and the current bucket becomes
bi in the results (line 8). When there are p–1 buckets constructed,
we group all remaining nodes into the last bucket and stop the
algorithm (line 9).

Algorithm 4: Iterative Bucket Construction(T , p)
Input: T : The R-Tree Index; p: The number of buckets
Output: B: The constructed buckets
begin1

Find the first level in T with more than p nodes;2

for i = 1 to p− 1 do3

Initilize bucket bi with node Nl;4

for node N ∈ U ′ do5

Find the bucket bi leading to smallest Υ(bi);6

if The value of Υ(bi) is not reduced then7

Remove N and stop here for bi;8

Add the remaining nodes into bucket bp;9

return B;10

end11

R1

[0,L]×[0,2L]
2t

R2

[L,2L]×[0,2L]
2t

R3

[2L,4L]×[L,2L]
2t

R4

[2L,3L]×[0,L]
t

R5

[3L,4L]×[0,L]
t

R6

[4L,5L]×[0,2L]
2t

R7

[5L,6L]×[L,2L]
t

R8

[5L,6L]×[0,L]
t

Root

Fig. 4. Iterative Method for Buckets Construction

TABLE 3
Statistics of Datasets

Dataset Cardinality Max Len Min Len Ave Len
KOSARAK 990,002 2498 1 8.1

LIVEJOURNAL 3,201,203 300 9 35.1
DBLP 4,039,510 245 1 7.1

PUBMED 20,916,083 3383 28 110.2

7 EVALUATION

7.1 Experiment Setup

We use four real world datasets to evaluate our proposed tech-
niques:

1) DBLP 1: a collection of titles and authors from dblp computer
science bibliography. The goal of this collection is to provide
real bibliography that is based on real scenarios. It could
be used for query reformulation or other types of search
research. We tokenized the records in this dataset following
previous study, that is we split all records based on non-
alphanumeric characters.

2) PUBMED 2: a dataset of basic information of biomedical lit-
erature from PubMed in XML format. We select the abstract
part of the datasets and divide the abstracts into tokens based
on spaces.

3) LIVEJOURNAL 3: the dataset contains a list of user group
memberships. Each line contains a user identifier followed
by a group identifier (separated by a tab), implying that the
user is a member of the group.

1. http://dblp.uni-trier.de/
2. https://www.ncbi.nlm.nih.gov/pubmed/
3. http://socialnetworks.mpi-sws.org/data-imc2007.html

0

1

2

3

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(1

0
3
m

s
)

k

RandomTrans
SingleTran
DualTrans

(a) KOSARAK

0

1

2

3

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(1

0
4
m

s
)

k

RandomTrans
SingleTran
DualTrans

(b) LIVEJOURNAL

0

1

2

3

4

5

6

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(1

0
3
m

s
)

k

RandomTrans
SingleTran
DualTrans

(c) DBLP

Fig. 5. Effect of Proposed Techniques: Query Time

0

1

2

3

4

5 10 20 50 100

N
u

m
b

e
rs

 o
f

V
e

rf
ic

a
ti
o

n
 (

1
0

5
)

k

RandomTrans
SingleTran
DualTrans

(a) KOSARAK

0

4

8

12

16

5 10 20 50 100

N
u

m
b

e
rs

 o
f

V
e

rf
ic

a
ti
o

n
 (

1
0

5
)

k

RandomTrans
SingleTran
DualTrans

(b) LIVEJOURNAL

0

4

8

12

16

20

5 10 20 50 100

N
u

m
b

e
rs

 o
f

V
e

rf
ic

a
ti
o

n
 (

1
0

5
)

k

RandomTrans
SingleTran
DualTrans

(c) DBLP

Fig. 6. Effect of Proposed Techniques: Number of Candidates

4) KOSARAK 4: the dataset is provided by Ferenc Bodon and
contains anonymous click-stream data of a Hungarian on-line
news portal.

The detailed statistical information is shown in Table 3. We
evaluate our disk-based algorithms on the PUBMED dataset, which
is much larger than the other datasets. And the other three datasets
are used to evaluate the in-memory algorithms. We implemented
our methods with C++ and compiled using GCC 4.9.4 with -
O3 flag. We obtain the source codes of all baseline methods
from the authors which are also implemented with C++. All the
experiments were run on a Ubuntu server machine with 2.40GHz
Intel(R) Xeon E52653 CPU with 16 cores and 32GB memory.

We compare our method with state-of-the-art methods on both
in-memory and disk-based settings. To the best of our knowledge,
among all existing studies, only MultiTree [30] and the top-k
search algorithm proposed in Flamingo [21](ver. 4.1) support
KNN set similarity search. We also extend the top-k set join
algorithm proposed in [25] based on their original implementation
to support KNN set similarity join and proposed PP-Topk algo-
rithm in the following way: we group the records by length and
build the index for the maximum length of prefix. Then we start
from Jaccard similarity 1.0 and incrementally decrease the value
of similarity according to the techniques proposed in [25] until
we collect k results. For disk-based settings, we only compare
with disk-based algorithm of Flamingo [5] as MultiTree only
works for in-memory settings. We will first show the results of
in-memory settings (Section 7.2-7.5) and then show it disk-based
settings (Section 7.6). To initialize the R-Tree, our implementation
performs bulk loading to construct the R-Tree from a dataset in
one time and then perform the queries.

For approximate KNN set similarity search, we extend min-
hash algorithm [6] to do approximate KNN set search, denoted
as MinHash as the baseline method of our Approx algorithm.

4. http://fimi.ua.ac.be/data/

In MinHash, we first utilize min-hash algorithm to transform
the original set records into hashed vectors. Then we utilize the
similar approach proposed in Approx to incrementally search for
the approximate KNN result.

7.2 Effect of Proposed Techniques
We first evaluate the effectiveness of our transformation tech-
niques. To this end, we propose three methods: RandomTrans
is the method that randomly groups the tokens into m groups to
generate the transformation. SingleTran is the method that uses
one transformation generated by the greedy grouping mechanism.
DualTrans is the dual-transformation based method.

The results of average query time are shown in Figure 5.
We can see that among all methods, DualTrans has the best
performance. The reason is that by utilizing two transformations,
it can capture more characteristics regarding set similarity. Thus it
can provide a tighter bound of JACCARD similarity and prune more
dissimilar records. Compared with RandomTrans, SingleTran
has much better performance. This is because random gener-
ated transformation always leads to uneven distribution among
different groups, which results in looser bound of JACCARD

similarity compared to SingleTran. It demonstrates the impor-
tance to generate a proper transformation in order to achieve
good performance. For example, on dataset LIVEJOURNAL when
k = 5, the query time of RandomTrans is 25784 ms; while the
query time of SingleTran and DualTrans are 11218 ms and 7161
ms, respectively.

Actually, from the aspects of performance, DualTrans out-
performs SingleTran obviously. This is because for DualTrans,
we construct two orthogonal transformations to calculate upper
bound individually whose quantity relation differs with specific
nodes or records to enlarge pruning power. The only extra cost
for DualTrans, compared to SingleTran, is that the number of
comparisons in each region of R-tree is doubled than that in
SingleTran. This would slightly increase the filter cost but will

10
3

10
4

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(m

s
)

k

Flamingo
PP-Topk
MultiTree

Transformation

(a) KOSARAK

10
4

10
5

10
6

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(m

s
)

k

Flamingo
PP-Topk
MultiTree

Transformation

(b) LIVEJOURNAL

10
3

10
4

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(m

s
)

k

Flamingo
PP-Topk
MultiTree

Transformation

(c) DBLP

Fig. 7. Compare with State-of-the-art Methods: Exact Algorithms

600

700

800

900

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(m

s
)

k

MinHash
App

(a) KOSARAK

1200

1600

2000

2400

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(m

s
)

k

MinHash
App

(b) LIVEJOURNAL

300

400

500

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(m

s
)

k

MinHash
App

(c) DBLP

Fig. 8. Compare with State-of-the-art Methods: Approximation Algorithms

definitely result in greater filter power, i.e., much smaller number
of verifications. From Figure 6, we also find that the pruning
power of DualTrans exceeds that of SingleTran because of our
ingenious design for multiple transformation.

In order to further demonstrate the filter power of proposed
methods, we also report the number of candidates for each
method as shown in Figure 6. DualTrans has the least number
of candidates. While RandomTrans has the largest number of
candidates under all settings. This is corresponding with the results
shown in Figure 5. For instance, on the LIVEJOURNAL for k = 5,
RandomTrans involves 1,460,904 candidates, while SingleTran
reduces the number to about 856,875. And DualTrans involves
only 474,204 candidates. From above results, we can conclude that
our proposed transformation techniques can obviously improve the
filter power as the number of candidates is reduced.

Next we study the effect of some parameters. First we look at
the dimension m of representative vectors . Figure 9 shows the
results when value of m varies. We can see that when m = 16,
our method has the best results. This is consistent with our
implementation strategy. Considering the memory alignment, we’d
better to let m be power of 2. Specifically, we assign 2 bytes for
each dimension and store all dimensions of representative vector
contiguously in memory layout. Actually, 2 bytes (0-65535) are
large enough for the number of tokens in one dimension of a
record. Besides, for DualTrans, each transformation in DualTrans
have m/2 dimensions. So if m becomes smaller, each trans-
formation will only have 4 dimensions, which is insufficient to
distinguish different records. Moreover, when m = 16, it requires
16 bytes to store the representative vectors. As the size of cache
line is 64B in modern computer architecture, each cache line could
hold 2 representative vectors. In addition, we need 2 vectors to
represent an MBR of one node in R-tree. Therefore, when we
perform searching in R-tree, we can acquire the MBR of a node by
visiting one cache line so as to improve the overall performance.

Also, we study the effect of ε in Approx since it plays
an important role on search time and recall rate. During the
experiments, the results on all three datasets show the similar
trends. Due to the space limitation, here we only report the result
on LIVEJOURNAL. Figure 10 shows the results when ε varies on
LIVEJOURNAL. It is obvious that the recall rate will be higher
while Approx costs more search time with larger ε. However, we
can see that when ε is larger than 1000, the recall rate is growing
slowly and stays at a relatively high value (≥ 75%) while the
search time still increases rapidly. Therefore, we choose ε = 1000
for our experiments. While Approx has reasonably high recall
rate, it requires much less search time than the exact algorithm.
For example, when k = 50 Approx only needs 2048ms, while
DualTrans requires 7468ms.

7.3 Compared with State-of-the-art Methods
Next we compare our DualTrans with state-of-the-art methods.
For each dataset, we randomly select 10,000 records from it as
query and report the average query time. We also also show
some min-max error bars to assess the stability of results. For all
baseline methods, we try our best to tune the parameters according
to the descriptions in previous studies and report their best results.
Here Transformation is the DualTrans method in Figure 5, which
has the best performance.

The results of comparing Transformation with Flamingo,
PP-Topk and MultiTree are shown in Figure 7. We can see
that our methods has 1.27 to 23.81 (on average 4.51) times
performance gain than state-of-the-art methods. For example,
on the dataset LIVEJOURNAL while k = 20, Flamingo took
89,024 ms, while Transformation only took 7,408 ms. The reason
is that Flamingo spends too much time on scanning inverted
lists. And for records with larger average length, this filtering
process becomes more expensive. As the complexity of calculating
JACCARD similarity is only O(n), its not proper for Flamingo to
spend too much time on improving filter power. For MultiTree, as

10

14

18

22

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(1

0
2
m

s
)

k

m=4
m=8

m=16
m=32

(a) KOSARAK

4

8

12

16

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(1

0
3
m

s
)

k

m=4
m=8

m=16
m=32

(b) LIVEJOURNAL

8

12

16

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(1

0
2
m

s
)

k

m=4
m=8

m=16
m=32

(c) DBLP

Fig. 9. Effect of Representation Vector Dimensions

0

1

2

3

4

5

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1.0

S
e
a
rc

h
 T

im
e
(1

0
3
m

s
)

R
e
c
a
ll

R
a
te

ε

Search Time
Recall Rate

Fig. 10. Effect of ε in Approx

they map records into one-dimensional numerical value, they will
lose significant portion of information and thus lead to poor filter
power. Also, though many optimization approaches are proposed
to speedup the join performance by [25], such techniques are more
suitable for join rather than search. Therefore, we can see from
PP-Topk that directly extending from existing study will lead to
suboptimal performance.

We also show the result of the approximate KNN algorithm
Approx in Figure 8. The performance of Approx significantly
outperforms MinHash. The reason is that Approx only needs to
visit the bucket and can avoid traversing the index. Besides, the
search space is also much smaller as we only need to perform
incremental search on the buckets. The reason is that the hash
index of MinHash distributes messier than that of Approx, and
MinHash needs to access more nodes than Approx to get the
same candidate records. At the same time, we report the recall of
Approx (App) and MinHash (MH) for each value of k in Table 4.
It ic computed by dividing the number of correct top-k records by
k. As the top-k results are not unique, we will treat any result with
correct similarity as valid. We can see that except for the efficiency
of Approx, the overall recall rate is also better. For example, on
dataset LIVEJOURNAL the average recall rate of Approx is 0.742
while that of MinHash is 0.464. The main reason is that MinHash
specifies the order of the dimensions. However, this order could
cause some false negative. For instance, if the min-hash results of
record are same as that of query records but different from the first
index, though they tend to be similar in high possibility, the record
will be accessed later than other records with the same first index
which might be dissimilar.

7.4 Indexing Techniques

Next we report the results about indexing. Here we focus on two
issues: index size and index construction time. The index sizes
of different methods are shown in Table 5. The index size of our

TABLE 4
The Recall Rate of Approx

k KOSARAK LIVEJOURNAL DBLP PUBMED
MH App MH App MH App App

5 0.42 0.65 0.48 0.82 0.33 0.64 0.75
10 0.40 0.71 0.44 0.77 0.37 0.69 0.73
20 0.38 0.68 0.39 0.68 0.42 0.71 0.67
50 0.41 0.64 0.51 0.69 0.38 0.63 0.74
100 0.37 0.66 0.50 0.75 0.36 0.62 0.77

TABLE 5
Index Size

size(MB) Flamingo PP-Topk MultiTree DualTrans
KOSARAK 193.4 217.5 68.3 118.7

LIVEJOURNAL 753.3 782.1 461.5 625.2
DBLP 525.7 544.8 453.4 606.3

PUBMED 6075.1 N/A N/A 3906.4

method is significantly smaller than that of Flamingo. This is
because we just store the data in leaf nodes of R-Tree and do not
build inverted lists. In this way, the index size only relies on the
cardinality of dataset rather than the length of records. Among
all methods, MultiTree has the smallest index size. The reason
is that MultiTree maps each record into a numerical value and
constructs a B+-Tree like index on them. However, there might
be significant loss of useful information in this process. Compared
with MultiTree, the index size of our method is only slightly larger
but our method achieves much better search performance.

The index construction time is shown in Figure 13. Actually
the index construction time of both Transformation and Multi-
Tree is significantly less than Flamingo. This is because these
two methods do not need to build inverted lists. Meanwhile,
Transformation has comparable index construction time with
MultiTree. For our method, the main cost of this process is to
map the original records into representative vectors and generate
dual transformation.

7.5 Scalability
Then we evaluate the scalability of our method. Here we report the
results of Transformation. On each dataset, we vary the number
of records from 20% to 100% and report the average search time
for each threshold. The results are shown in Figure 11. We can
see that with the increasing number of records in the datasets, our
method scales very well with the size of dataset and achieves near
linear scalability. For example, on the LIVEJOURNAL data sets,
when k = 10 , the average search time for 20%, 40%, 60%, 80%,
100% size of dataset are 1393 ms, 2871 ms, 4523 ms, 5713 ms
and 7304 ms, respectively.

Besides, we can see that Transformation is also insensitive
to the variation of k. For example, on the dataset LIVEJOUR-
NAL, for 20% size of datasets, the average search time for

0

4

8

12

16

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(1

0
2
m

s
)

k

20%
40%
60%
80%

100%

(a) KOSARAK

0

2

4

6

8

10

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(1

0
3
m

s
)

k

20%
40%
60%
80%

100%

(b) LIVEJOURNAL

0

4

8

12

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(1

0
2
m

s
)

k

20%
40%
60%
80%

100%

(c) DBLP

Fig. 11. Scalability: Effect of Data Size

10
4

10
5

10
6

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(m

s
)

k

Flamingo
Transformation

App

(a) Compare with state-of-art methods

10
2

10
3

10
4

5 10 20 50 100

I/
O

 c
o
u
n
t

k

Flamingo
Transformation

App

(b) I/O Cost with state-of-art methods

0

2

4

6

8

5 10 20 50 100

S
e
a
rc

h
 T

im
e
(1

0
4
 m

s
)

k

20%
40%
60%
80%

100%

(c) Scalability

Fig. 12. Disk-based Algorithm

10
2

10
3

10
4

10
5

10
6

kosarak livejournal dblp pubmed

In
d

e
x
 T

im
e

 (
m

s
)

Dataset

Flamingo
PP-Topk
MultiTree

Transformation

Fig. 13. Index Construction Time

k = 5, 10, 20, 50, 100 are 1376ms, 1393ms, 1467ms, 1498ms and
1579ms, respectively. The reason is that with the well designed
dual transformation, we can group similar records into one leaf
node of the R-Tree index. Then we performing KNN search, it is
very likely that other dissimilar nodes are pruned and we can find
the k results within very few leaf nodes.

7.6 Evaluate Disk-based Settings

Our proposed methods can also support disk-based settings. Un-
like the in-memory scenario, all the index and data will be located
on disk. Here we evaluate the proposed methods using PUBMED

dataset, which is much larger than the other three datasets.
We first compare our proposed method with state-of-the-art

method. The results are shown in Figure 12(a). Our methods
perform better than Flamingo in different k values. For example,
when k = 5, the average search time of DualTrans is 65365
ms, which is significantly less than that of Flamingo, 172615
ms. The reason is that our proposed method utilizes the R-tree
structure to avoid unnecessary access of index, which significantly
reduces the I/O cost compared with Flamingo. To demonstrate
this, we also report the number of I/Os required by each method in
Figure 12(b). The results are consistent with that in Figure 12(a).

For instance, when the k = 5, the average number of I/O access
of Transformation is 1758, while that of Flamingo is 6123. For
indexing issues, the results show similar trend with the in-memory
settings, as is shown in Figure 13 and Table 5.

We also show the performance of Approx disk-based settings.
Besides its good efficiency, the recall rate is also promising as is
shown in Table 4. Furthermore, Approx can save a great number
of I/O cost as it only needs to load the buckets with overlapping
one by one and does not need to traverse the R-Tree index.

Finally we report the scalability of Transformation for disk-
based settings, Figure 12(c) shows that our method achieves good
scalability among different numbers of records. For example,
when k = 10, the average search time for different sizes are
11856ms, 24602ms, 38174ms, 51474ms and 66200ms, respec-
tively.

8 CONCLUSION

In this paper, we study the problem of KNN set similarity search.
We propose a transformation based framework to transform set
records to fixed length vectors so as to map similar records closer
to each other. We then index the representative vectors using R-
Tree index and devise efficient search algorithms. We also propose
approximate algorithm to accelerate the KNN search process.
Experimental results show that our exact algorithm significantly
outperforms state-of-the-art methods on both memory and disk
settings. And our approximate algorithm is more efficient and
with high recall rate at the same time. For the future work, we
plan to extend our techniques to support KNN problem in other
field, such as spatial and temporal data management. Besides,
we would also like to conduct more probabilistic analysis on the
basis of our transformation based techniques.

Acknowledgment We would like to thank all editors and
reviewers for their valuable suggestions. This work was supported

by NSFC(91646202), National Key Technology Support Program
of China (2015BAH13F00), National High-tech R&D Program of
China(2015AA020102). Jin Wang is the corresponding author.

REFERENCES

[1] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in
spatial databases. In SIGMOD, pages 13–24, 1999.

[2] T. D. Ahle, R. Pagh, I. P. Razenshteyn, and F. Silvestri. On the complexity
of inner product similarity join. In PODS, pages 151–164, 2016.

[3] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. In WWW, pages 131–140, 2007.

[4] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An
efficient and robust access method for points and rectangles. In SIGMOD,
pages 322–331, 1990.

[5] A. Behm, C. Li, and M. J. Carey. Answering approximate string queries
on large data sets using external memory. In ICDE, pages 888–899, 2011.

[6] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-
wise independent permutations (extended abstract). In STOC, pages 327–
336, 1998.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for
similarity joins in data cleaning. In ICDE, page 5, 2006.

[8] D. Deng, G. Li, J. Feng, and W.-S. Li. Top-k string similarity search with
edit-distance constraints. In ICDE, pages 925–936, 2013.

[9] D. Deng, G. Li, H. Wen, and J. Feng. An efficient partition based method
for exact set similarity joins. PVLDB, 9(4):360–371, 2015.

[10] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi. Dsh: data sensitive hashing
for high-dimensional k-nnsearch. In SIGMOD, pages 1127–1138, 2014.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimen-
sions via hashing. In VLDB, pages 518–529, 1999.

[12] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
SIGMOD, pages 47–57, 1984.

[13] M. Jiang, A. W. Fu, and R. C. Wong. Exact top-k nearest keyword search
in large networks. In SIGMOD, pages 393–404, 2015.

[14] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. In ICDE, 2008.

[15] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):329–343, 1982.

[16] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation of set
similarity join techniques. PVLDB, 9(9):636–647, 2016.

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In NIPS,
pages 3111–3119, 2013.

[18] M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k query processing in
uncertain databases. In ICDE, pages 896–905, 2007.

[19] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS: solving c-
approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index. PVLDB, 8(1):1–12, 2014.

[20] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins
using mapreduce. In SIGMOD, pages 495–506, 2010.

[21] R. Vernica and C. Li. Efficient top-k algorithms for fuzzy search in string
collections. In KEYS, pages 9–14, 2009.

[22] J. Wang, G. Li, D. Deng, Y. Zhang, and J. Feng. Two birds with one
stone: An efficient hierarchical framework for top-k and threshold-based
string similarity search. In ICDE, pages 519–530, 2015.

[23] X. Wang, X. Ding, A. K. H. Tung, and Z. Zhang. Efficient and effective
KNN sequence search with approximate n-grams. PVLDB, 7(1):1–12,
2013.

[24] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang. Leveraging set
relations in exact set similarity join. PVLDB, 10(9):925–936, 2017.

[25] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In
ICDE, pages 916–927, 2009.

[26] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for
near duplicate detection. In WWW, pages 131–140, 2008.

[27] Z. Yang, J. Yu, and M. Kitsuregawa. Fast algorithms for top-k approxi-
mate string matching. In AAAI, 2010.

[28] K. Yi, X. Lian, F. Li, and L. Chen. The world in a nutshell: Concise
range queries. IEEE Trans. Knowl. Data Eng., 23(1):139–154, 2011.

[29] J. Zhai, Y. Lou, and J. Gehrke. ATLAS: a probabilistic algorithm for
high dimensional similarity search. In SIGMOD, pages 997–1008, 2011.

[30] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and X. Yuan. An efficient
framework for exact set similarity search using tree structure indexes. In
ICDE, pages 759–770, 2017.

[31] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava. Bed-tree:
an all-purpose index structure for string similarity search based on edit
distance. In SIGMOD, pages 915–926, 2010.

[32] B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and G. Li.
Keyword-aware continuous knn query on road networks. In ICDE, pages
871–882, 2016.

Yong Zhang is associate professor of Research In-
stitute of Information Technology at Tsinghua Univer-
sity. He received his BSc degree in Computer Science
and Technology in 1997, and PhD degree in Computer
Software and Theory in 2002 from Tsinghua University.
From 2002 to 2005, he did his Postdoc at Cambridge
University, UK. His research interests are data manage-
ment and data analysis. He is a member of IEEE, and
a senior member of China Computer Federation.

Jiacheng Wu is a master student in Department of
Computer Science and Technology, Tsinghua Univer-
sity. He obtained the bachelor degree from School of
Software Engineering, Nankai University in 2018. His
research interest includes operating system and scal-
able data analysis.

Jin Wang is a PhD student in Computer Science
Department, University of California, Los Angeles. Be-
fore joining UCLA, he obtained his master degree in
computer science from Tsinghua University in the year
2015. His research interests include text analysis and
processing, stream data management and database
system.

Chunxiao Xing is professor and associate dean of
Information Technology Research Institute (RIIT), Ts-
inghua University, and director of Web and Software RD
Center (WeST). He is the director of Big Data Research
Center for Smart Cities, Tsinghua University. He is also
the deputy director of the Office Automation Technical
Committee of China Computer Federation, a member
of China Computer Federation Technical Committee on
databases, big data and software engineering. He is
also the member of IEEE and ACM.

APPENDIX A
PROOF OF LEMMA 1
Proof. First, we could deduce the JACCARD distance from JACCARD similarity:

JacDist(X,Y) = 1−
|X ∩ Y |
|X ∪ Y |

(12)

= 1−
|X ∩ Y |

|X|+ |Y | − |X ∩ Y |
(13)

= 1− (
|X|+ |Y |
|X ∩ Y |

− 1)
−1 (14)

Then we generate ω[X] and ω[Y], the representative vectors of X and Y . With
the help of ω[X] and ω[Y], we can estimate the upper bound of their overlaps as:

|X∩Y | ≤
m∑

i=1

min(ωi[X], ωi[Y]). Thus, we can assert that TransDist(ω,X, Y) ≤

JacDist(X,Y), which finishes the proof. �

APPENDIX B
PROOF OF THEOREM 1
Proof. We can make a reduction of optimal transformation from 3-SAT problem. Firstly,

our problem is as hard as the following one: given a set P of points, a constant S, and the
dimension k of representative vector, for all records X ∈ U , decide whether there exists

a transformation ω s.t.
∑

〈X,Y 〉∈U2

X 6=Y

m∑
i=1

min(ωi[X], ωi[Y]) = S.

Next we further add more constraints and then try to reduce above problem into
vertex coloring problem. Here we assume the all records only contains one token and
therefore after the transformation, all representative vectors only contains a 1 in one
dimension and all 0 for other dimensions. As the real problem is more complex than the
one with above assumption. We only need to prove the above one is NP-Hard.

Then we consider each record as a vertex in graph. And if we need to calculate∑m
i=1 min(ωi[X], ωi[Y]), then there is an edge between two nodes representing

records X and Y . Then we regard those different types of representative vectors as
different colors, i.e., the dimension k means k different colors. Thus, the transfor-
mation is just like a coloring strategy. Moreover, under this assumption, the value
of

∑m
i=1 min(ωi[X], ωi[Y]) is 1 iff two nodes representing records X , Y were

connected by an edge has the same color and 0 otherwise.
Therefore, we can rewrite the problem as following: Given a graph G =< V,E >

and k colors, find a coloring strategy where sum of pairs of nodes connected by edges
with the same color equals a given constant S. If S is 0, then the problem is as hard as the
a known NP-hard problem k-coloring. When S is larger than 0, actually there must exist
S pairs of adjacent nodes with same color, then we could merge each pairs of adjacent
nodes into one node. Then the edges originally connected to those pairs of nodes now
connect to those merged nodes, individually. As a result, we construct a new graph whose
S equals 0. In this way, we reduce optimal transformation to the graph coloring problem.
�

APPENDIX C
PROOF OF LEMMA 2
Proof. Given a query Q and a node N , we need to prove that MinDist(ω,Q,N) ≤

minR∈N JacDist(Q,R). First we need to prove the following conclusion:

min
R∈N

∑m
i=1(ωi[Q] + ωi[R])∑m

i=1 min(ωi[Q], ωi[R])
≥

n(ω,Q,N)

d(ω,Q,N)
(15)

We can denote the lhs of Equation 15 as the function:

F(ωi[R]) =
C1 + ωi[Q] + ωi[R]

C2 + min(ωi[Q], ωi[R])
, where we have ωi[R] ∈ [B⊥j ,B>j] with

given MBR of node N for specific dimension i, and regard other ωj 6=i[R] as constants.
Considering the relation between ωi[Q] and [B⊥j ,B>j], we can rewrite the function as:

F(ωi[R]) =

C1 + ωi[Q] + ωi[R]

C2 + ωi[Q]
ωi[Q] < B⊥i

C1 + ωi[Q] + ωi[R]

C2 + min(ωi[Q], ωi[R])
B⊥i ≤ ωi[Q] < B>i

C1 + ωi[Q] + ωi[R]

C2 + ωi[R]
B>i ≤ ωi[Q]

(16)

Since ωi[R] ∈ [B⊥j ,B>j], we could get the minimum value among:

C1 + ωi[Q] + B⊥i
C2 + ωi[Q]

(ωi[R] = B⊥i) ωi[Q] < B⊥i
C1 + ωi[Q] + ωi[Q]

C2 + ωi[Q]
(ωi[R] = ωi[Q]) B⊥i ≤ ωi[Q] < B>i

C1 + ωi[Q] + B>i
C2 + B>i

(ωi[R] = B>i) B>i ≤ ωi[Q]

(17)

Therefore, we would like to minimize F(ωi[R]) individually for each ωi[R] to get
the minimum value. Then the minimum value of F can be written as n(ω,Q,N)

d(ω,Q,N)
. Thus,

we complete the proof of Equation 15.

In proof of Lemma 1, we assert the JacDist(Q,R) ≥ 1 −

(
|Q|+ |R|∑m

i=1 min(ωi[Q], ωi[R])
− 1)−1. Thus,

min
R∈N

JacDist(Q,R) ≥ 1− (min
R∈N

(
|Q|+ |R|∑m

i=1 min(ωi[Q], ωi[R])
)− 1)−1

(18)
Also as |Q|+ |R| =

∑m
i=1(ωi[Q] + ωi[R]), we get that

min
R∈N

JacDist(Q,R) ≥ 1−(
n(ω,Q,N)

d(ω,Q,N)
−1)−1 = MinDist(ω,Q,N)

(19)
And thus the proof completes. �

APPENDIX D
PROOF OF THEOREM 2
Proof. We only need to prove that given the query Q and the transfor-
mation ω, if child Nc satisfies MinDist(ω,Q,Nc) ≥ UBR, then the
child could be pruned safely. Based on Lemma 2, MinDist(ω,Q,Nc)
is the lower bound of JACCARD distance between Q and any record
X ∈ Nc. If MinDist(ω,Q,Nc) ≥ UBR, the JACCARD distance
between any records X ∈ Nc and Q is no smaller than UBR, which
is the upper bound of Jaccard Distance for current KNN candidate
results. Therefore, any record X ∈ Nc cannot be the candidate of
KNN results. �

APPENDIX E
PROOF OF LEMMA 3
Proof. Given records X , Y and a set of different transformations

⊎
Ω.

Based on Lemma 1, we could say that for each ωi ∈ Ω, inequality
TransDist(ωi, X, Y) ≤ JacDist(X,Y) holds. Then the following
inequality holds:

max
1≤i≤|Ω|

TransDist(ωi, X, Y) ≤ JacDist(X,Y) (20)

Therefore, TransDist(
⊎

Ω, X, Y) ≤ JacDist(X,Y).
Based on the proof, we also find that this Multiple-Transformation

Distance is a tighter lower bound of JACCARD distance compared with
individual transformation distance. �

APPENDIX F
PROOF OF LEMMA 4
Based on Lemma 4, it is obvious that for each ωi ∈ Ω, the inequality
MinDist(ωi, Q,N) ≤ minR∈N JacDist(Q,N) holds:

MinDist(ωi, Q,N) ≤ max
1≤i≤|Ω|

(MinDist(ωi, Q,N)) =

MinDist(
⊎
Ω

, Q,N) ≤ min
R∈N

JacDist(Q,N)
(21)

Therefore, based on the latter inequality, MinDist(
⊎

Ω, Q,N) is the
lower bound of JACCARD distance; and based on the former inequal-
ity, MinDist(

⊎
Ω, Q,N) is tighter than individual MinDist(ωi, Q,N).

�

APPENDIX G
PROOF OF THEOREM 3
Proof. We can make a reduction of optimal bucket construction from

Planar 3-SAT problem.
Our problem can be rewritten as the following problem: Finding

p partitions of the set U of points with p MBRs to minimize the
information loss(the definition is as follows) of U . The information
loss for a partition is defined as ni

∑m
i=1 Li. And the information

loss of U is the summation of information loss for all partitions. The
special case of above problem (when m = 2) has been proved to
be NP-hard (See Theorem 2 in [28]) by reducing the PLANAR 3-
SAT,which is an NP-complete problem [15] to this case. Hence, any
instance of above problem, which is NP-hard, can be reduced to an
instance of our problem. �

APPENDIX H
EXAMPLE OF ALGORITHM 3 AND ALGORITHM 4

Example 7. Here is the example of Algorithm 3 on the collections
of records in Example 5. We first get the transformation G
by applying Algorithm 1. We have: G1 = {x1, x5, x9, x13},
G2 = {x2, x6, x10, x14}, G3 = {x3, x7, x11, x15} and
G4 = {x4, x8, x12, x16}. We regard these groups as collections
of records, apply Greedy Grouping Mechanism again on
each group and collect their results into =. For instance,
when applying Greedy Grouping Mechanism on G1, then
the result K = {{x1}, {x2}, {x3}, {x4}}. Therefore, = =
{{{x1}, {x2}, {x3}, {x4}}, {{x5}, {x6}, {x7}, {x8}}, ...}.
Then according to Algorithm 3, we first get
K = {{x1}, {x2}, {x3}, {x4}}, then for each group in K,
we allocate H1 according to the frequency. As H1 does not
contain other group Kk, we assign all tokens in K1 to H1.
Then we have H1 = {x1}. We repeat this procedure and
finally get the transformation H, H1 = {x1, x2, x3, x4},
H2 = {x5, x6, x7, x8}, H3 = {x9, x10, x11, x12} and
H4 = {x13, x14, x15, x16}. According to the definition of
“similar transformation”, we can see that transformations G and
H are dissimilar.

Example 8. Figure 4 demonstrates an running example of Algo-
rithm 4. We present the first three layer nodes of R-tree to show
the process of generating buckets. Here all nodes in third layer
are internal nodes, which the dotted lines under the leftmost node
indicate. Here a red ellipse around nodes means a bucket. The
caption shown in nodes consists of two parts, the MBR of nodes
and the numbers of records in the nodes.
Here we want to generate p = 3 buckets in the situation where
m = 2. At first, current i = 1 and then we add R1 into b1, and
calculate the value Υ(b1) = (6 + 20

√
5)tL. while trying to add

R2 into b1, MBR(b1) = [0, 2L]×[0, 2L]. while the MBR of the
rest area is [2L, 6L]× [0, 2L], which means A(U ′) = 8L2. Then
we can get n1 = 4t and n′ = 8t. Therefore, Υ(b1) = 4t∗2∗2L+
8t∗2∗

√
4L2 = 48tL < (6+20

√
5)tL. Therefore, we add R2 into

b1 and continue the iteration. Next we are trying to add R3. As
the same procedural above, Υ(b1) = 60tL > 48tL, which means
this node cannot be added into current bucket. Therefore, b1 only
contains R1, R2. After that, we need to handle the next bucket
b2. With the same procedure, we add R3, R4, R5 into b2. Finally,
we add the remaining nodes R6, R7, R8 into b3. Therefore, we
finish the buckets constructions based on the non-leaf node from
the tree.

