Minun: Evaluating Counterfactual Explanations for Entity
Matching

Jin Wang
jin@megagon.ai
Megagon Labs
United States

ABSTRACT

Entity Matching (EM) is an important problem in data integration
and cleaning. More recently, deep learning techniques, especially
pre-trained language models, have been integrated into EM applica-
tions and achieved promising results. Unfortunately, the significant
performance gain comes with the loss of explainability and trans-
parency, deterring EM from the requirement of responsible data
management. To address this issue, recent studies extended ex-
plainable Al techniques to explain black-box EM models. However,
these solutions have the major drawbacks that (i) their explana-
tions do not capture the unique semantics characteristics of the
EM problem; and (ii) they fail to provide an objective method to
quantitatively evaluate the provided explanations. In this paper,
we propose Minun, a model-agnostic method to generate expla-
nations for EM solutions. We utilize counterfactual examples gen-
erated from an EM customized search space as the explanations
and develop two search algorithms to efficiently find such results.
We also come up with a novel evaluation framework based on a
student-teacher paradigm. The framework enables the evaluation
of explanations of diverse formats by capturing the performance
gain of a “student” model at simulating the target “teacher” model
when explanations are given as side input. We conduct an extensive
set of experiments on explaining state-of-the-art deep EM models
on popular EM benchmark datasets. The results demonstrate that
Minun significantly outperforms popular explainable AT methods
such as LIME and SHAP on both explanation quality and scalability.

ACM Reference Format:

Jin Wang and Yuliang Li. 2022. Minun: Evaluating Counterfactual Explana-
tions for Entity Matching. In Proceedings of Proceedings of the Sixth Workshop
on Data Management for End-To-End Machine Learning, June 12—17, 2022,
Philadelphia, PA (DEEM@SIGMOD °22). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Entity matching (EM), a.k.a entity resolution, record linkage, refer-
ence reconciliation, and duplicate detection, refers to the problem of
identifying pairs of data entries that represent the same real-world
entity [18, 20]. It is a fundamental problem of data integration and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DEEM@SIGMOD °22, 15.00

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Yuliang Li
yuliang@megagon.ai
Megagon Labs
United States

has a broad scope of real-world applications. Recently deep learn-
ing techniques have been widely adopted in data integration tasks
including EM [36] due to their superior performance and the ability
to avoid intensive feature engineering efforts. Among them, EM so-
lutions that utilize pre-trained Transformer models (LM) [4, 19, 27]
have achieved state-of-the-art results.

Nevertheless, the performance of deep learning based approaches
is at the cost of reducing transparency and interpretability. While
classic EM methods relying on traditional machine learning or
string similarity measurement are naturally interpretable, deep
learning based approaches are more like black-box models that
are barely interpretable nor provide sufficient explanations of the
outcome. In real application scenarios, however, it is essential to
ensure that human users can interpret these models and understand
why they make certain positive/negative predictions. For example,
businesses can benefit from the models being more transparent to
trust them in decision making; while the end-users can gain more
insights and confidence in the models’ predictions. More recently,
the data management community has also recognized the necessity
of responsible data management [34]. Following this trend, there
is a series of studies trying to provide explainable results for data
management applications. Based on whether the internal structure
of the target model is available when making the explanations,
the explanation methods can be categorized into the black-box
and white-box based methods [14]. White-box methods exploit
the structural properties of the models, such as decision trees, to
generate the explanations; while for black-box methods, the target
model is only available as an oracle that returns a prediction of
the given input. Besides, the global explanation methods aim at
systematically explaining the behavior of a model, while the local
explanation methods focus on explaining the model’s behavior for
each given instance [14].

To satisfy the requirement of responsible data management,
many efforts have been made to explain the results of deep learn-
ing based EM approaches [2, 3, 5, 8]. The main methodology of
them is to extend black-box explanation methods from the field
of explainable Al to provide local explanations, i.e. given the pre-
diction of an input pair of entities, explain why they match or do
not match. The explanation typically comes in the format of which
elements from the input contribute most to the matching decision.
However, these methods suffer from two major flaws: First, they
failed to identify a proper granularity of the explanations. Generally
speaking, they provide explanations at two levels: the token level
and the attribute level. However, in practice, these two types of
explanations alone are not expressive enough to capture the rich
matching-based semantics of EM tasks. Instead, it is usually nec-
essary to have a finer-grained explanation type that captures the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

interaction between key tokens or attributes. Selecting the right
level of granularity is also key to the performance of explanation
methods. Second, they did not provide a reasonable way to quanti-
tatively evaluate the quality of explanation results. Most of them
relied on case studies to illustrate the explanations; while the quan-
titative studies made by some methods [2, 3] are specific to their
own explanation framework and cannot be easily extended to other
ones. As a result, it is hard to compare the quality of explanations
from different explanation approaches.

In this paper, we propose Minun, a model-agnostic framework
to provide local explanations for black-box EM models. Specifically,
we utilize counterfactual examples of entity pairs as the explana-
tion. Following previous studies, a counterfactual example in EM
application is a new instance that can flip the prediction by the
black-box model on the original input instance. There are some
existing studies in the data management field that aim at finding
counterfactual explanations. Two typical examples are Geco [32]
and Lewis [12]. However, they cannot be directly applied to EM
applications because (i) currently they only support tabular data
with numerical and categorical attributes, while EM requires to
work on one or several textual attributes; (ii) they are designed for
single-record classification while EM is a matching task requiring
classification of entity or sequence pairs. As a result, it is rather
difficult for them to capture the pair-wise interactions between the
input pairs of entities.

To address such challenges, we regard tokens in two entity en-
tries as the basic unit of explanations and develop a token-level edit
distance metric to describe the search space of the problem. On the
basis of it, we further define explanations to be sequences of oper-
ations on one entity entry that make it more similar to the other
entry to flip the negative prediction made by the black-box model
to positive (or vice versa). In this case, the explanations generated
by our framework become pairwise and can capture semantically
richer matching signals between the two entity entries. Under this
framework, we first propose a simple greedy search algorithm that
enumerates the edit operations on each pair of attributes respec-
tively. To accelerate this process, we further develop a more efficient
binary search algorithm to skip any unnecessary candidates.

Moreover, we also develop a new evaluation framework to judge
the quality of explanations based on a recent trend developed in
NLP [15, 29]. The basic idea is that we utilize the generated explana-
tions to construct a training set to train a new model different from
the black-box model to be explained. Then the black box model
can be regarded as a “teacher” that teaches the “student” model
using knowledge from the generated explanations. Consequently,
the quality of a set of explanations can be objectively measured by
the performance of the student model. We further show that the
proposed framework is a general solution as it can capture a wide
variety of explanation methods including LIME [30], SHAP [21],
and various counterfactual explanation methods.

In summary, this paper makes the following contributes:

e We propose Minun, a model-agnostic framework to explain
the results of entity matching applications with the help of
counterfactual examples.

e We present a novel method to describe the counterfactual
explanations for sequence pairs as well as textual records.

We also propose two efficient search algorithms for those
explanations.

e We develop an evaluation framework that allows researchers
to quantitatively measure the quality of explanations for EM
applications.

e We evaluate our proposed methods on several popular EM
datasets using the evaluation framework. The results demon-
strate that Minun generates higher-quality counterfactual
explanations while being more scalable versus popular ex-
plainable AI solutions such as LIME or SHAP.

e We will open-source Minun at https://github.com/megagonlabs/

minun.

The rest of this paper is organized as follows: Section 2 intro-
duced the background and formally defines the problem. Section 3
proposed two algorithms to efficiently find the counterfactual ex-
planations. We present in Section 4 a novel evaluation framework
to judge the quality of the generated explanations. Section 5 shows
the experimental results. We survey related work in Section 6 and
conclude in Section 7.

2 PRELIMINARY
2.1 Terminology

We first introduce the necessary terminologies to formally describe
the problem.

Given a pair of entity entries, the entity matching (EM) problem
aims at identifying whether the two entity entries refer to the
same real-world object. We denote the pair record as p = (Er, Eg)
that consists of two entity entries (left and right) and the label |
for them can be 1 (match) or 0 (unmatch). Here an entity entry E
consists of a set of attributes where each attribute a is a sequence
of tokens. An entity entry E with n attributes can be denoted as
E = {a1,ay,...,an}. The i-th attribute in the left/right entity is
denoted as alL and af respectively. Correspondingly, an attribute a;
with m tokens can be denoted as a; = [t1, f2, . .., tm]. The length of
an attribute is defined as the number of tokens in it. In this paper,
we assume that the two entity entries in a pair are structural and
with the same or pre-aligned attributes, following the settings of
previous studies [18, 19, 24].

For learning-based EM, the goal is to train a binary classifier M
such that for every pair p = (Er, ER), M(p) = 1if E; matches Eg
and 0 otherwise. For the standard supervised learning setting, the
classifier M is first trained on a training dataset Dy,jn of labeled
entry pairs then evaluated on an unseen test dataset Drest by com-
puting the F1 scores. For explanations in this paper, we assume the
settings of black-box explanations, meaning that the only interac-
tion between an explanation method (i.e., the explainer) with the
target EM model M is by querying M as an oracle with pairs of
entity entries to obtain the binary predictions.

2.2 Counterfactual Explanation

Suppose we have a black-box model for EM denoted as M, an or-
acle that can make a binary prediction 0/1 when given a pair of
entity entries. Given an entity pair p, a counterfactual example
of p denoted as p’, which is generated by applying certain per-
turbations over p, can flip the prediction of the black-box model
M, i.e. M(p) # M(p’). In a nutshell, counterfactual explanations

https://github.com/megagonlabs/minun
https://github.com/megagonlabs/minun

Prediction

Entry L Matching Match /
Entry R Model Not-match

l eouery
----------------------] -

Counterfactual
Explanations

Search Space

Figure 1: An overall architecture of counterfactual explanation
search algorithms.

describe the minimal changes to change the model’s prediction. To
formally define the task, one needs to identify the search space and
distance metrics, as in previous studies [21, 30, 31]. The search space
describes the valid (sequence of) perturbations to obtain p’ from p,
while a properly chosen distance metrics ensures that p and p” are
naturally close together according to the application’s needs. We
have the following generic problem definition:

Definition 2.1. Given a black-box model M, an input instance p, a
search space ®, and a distance metrics D, the goal of counterfactual
explanation is to compute counterfactual example p’ € ®(p) such
that M(p”) # M(p) and p” minimizes D(p, p’).

2.3 Baseline Approaches

Next, we describe baseline approaches for generating counterfactual
explanations for EM. Given the search space ®, the black-box model
M, and an input instance p, a generic baseline solution is to traverse
the search space @(p) in ascending order of the distance metrics
and evaluate for each p’ € ®(p), whether the prediction can be
flipped, i.e., M(p) # M(p’). Note that applications may require a
set of counterfactual examples as output. So the loop continues
until it finds enough results or all candidates have been checked.
Figure 1 shows the overall architecture of this generic process.

Without further optimizations, we can come up with several
baseline solutions for EM based on the above template. First, we
define the search space based on token-level or span-level trans-
formations. Here we treat each record p as a token sequences that
consist of the tokens from the two entity entries. Motivated by
previous studies [30, 31] that remove tokens to create candidate
explanations, the first baseline method generates candidates by
removing spans of tokens with a fixed length g from the token
sequence. The search space can be constructed by using a sliding
window of length g over an entity entry to enumerate the spans to
be removed.

One issue to be resolved in the first baseline is that the removal
operations typically make the two entity entries more dissimilar.
This means that the generated explanations can only flip the posi-
tive predictions by the black-box model (we will call them “positive
pairs” and the ones with negative predictions “negative pairs” next).
For negative pairs, we need a separate search space that generates
candidates that make the two entity entries more similar. To this
end, we propose the second baseline as follows. For negative pairs
of entity entries, we generate the candidates by copying spans of
tokens with a fixed length g from one entity to the other one. A
combined version of the baseline can generate candidates from the

union of the two search spaces by applying the removal operation
on the positive pairs and the copy operation for the negative pairs.

2.4 Extending the search space

The above baseline methods are limited as they can only generate
simple explanations. Indeed, in our experiment, explanations based
on 3-gram have low coverage of only 8.2% of the instances in the
datasets, i.e., >90% of all the instances cannot be explained by token-
level operations of 3-grams. To address this challenge, our first
step is to extend the search space by providing a richer set of
transformations to improve the explanation coverage for EM.

The core idea is the following. Instead of treating the input p
as a single sequence as in previous studies of explaining black-
box NLP models, we describe the explanations for a given pair p
as transformations from the left entity entry to the right (or vice
versa). If M(p) is 1, then the transformations should make the left
entry less similar to the right entry so as to flip the prediction to
0; similarly, if M(p) is 0, the transformations should make the left
entry more similar with the right one. Each unit transformation can
be defined as a token-level operator, e.g., token removal, insertion,
or replacement. To support the unique characteristics of EM as a
matching task, we also allow transformations to be attribute-level
operators such as copying tokens from the right entry to the left
highlighting the difference between the two attributes. Under this
definition of transformations, we can restrict the search space to
be within a tractable scale. In addition, we can naturally define
the distance metrics to be the edit distance, namely the number of
transformation steps needed to reach p’ from p. We formally define
our search space and search algorithms in Section 3.

The motivation of making the above search space definition is
two-fold: first, previous studies of counterfactual explanations [12,
32] only support categorical and numerical features. As such, their
problems of finding counterfactual examples naturally has a finite
search space. However, in EM applications, most features are textual
which can result in a search space of infinite size for the candidate
p’. By introducing the attribute-wise transformation, we define a
finite search space with reasonable semantics for textual features
in EM applications. Second, since EM is a pairwise matching task,
i.e., it can be formulated as classification of sequence pairs, the
explanations should capture similarity and dissimilarity between
the two input entries. Our extended search space definition provides
exactly such transformation as we highlighted above.

3 METHODOLOGY

In this section, we introduce the algorithms to find counterfactual
explanations for EM applications. We first formally define the search
problem in Section 3.1. Then we propose a greedy algorithm in
Section 3.2 and a binary search optimization in Section 3.3.

3.1 Problem Definition

To formulate the problem of explaining EM, we first need to define
the search space. Based on the above discussion, the search space
is decided by the transformations between attributes of the left and
right entities. To this end, we introduce the definition of token-level
edit distance, which is a generalization of the character-level edit
distance widely used in measuring string similarity [13]. Similar

to character-level edit distance, there are three basic operations
in token-level edit distance: insertion, deletion, and substitution.
The distance definition is the minimum number of operations to
transform one token sequence into another. The only difference is
that the operations are performed on tokens instead of characters.
The computation of token-level edit distance can be done using
dynamic programming within O (n?) time, where n is the number
of tokens of the two input sequences. In the rest of this paper, we
will use edit distance for short if there is no ambiguity. Given two
token sequences S and T, we denote their edit distance as ED(S, T).

Name Address City Phone Type Class
cafe ritz-carlton 3434 peachtree atlanta 404-237-2700, international 89
buckhead rd. ext 6108
Name Address City Phone Type Class
ritz-carlton dining = 3434 peachtree atlanta | 404-237-2700 american %
room (buckhead) rd. ne (new)

Figure 2: An example of entity pairs labeled as “unmatch”.

Next, to explain black-box EM models, we apply the transforma-
tion operators defined above on each pair of aligned attributes of
the input entries. Note that the edit distance between the left and
right entries can be calculated by summing up those between each
pair of aligned attributes. As edit distance is symmetric, without
loss of generality, we assume that all operations will be performed
to transform the left entity to the right one. For each attribute a;, the
candidate explanations are generated by applying 0 to ED(a{.‘, af)
edit operations. The search space can be formulated as the combi-
nation of all possible transformations from all attributes. Given an
entity pair p, we denote the search space constructed correspond-
ingly as ®(p). Following the idea of previous studies of finding
counterfactual explanation [32], a good explanation should have
fewer different features from the original instance. Therefore, in
our search problem definition, we also aim at finding the candidates
that can flip the predictions while having the smallest edit distance
from the original input.

Example 3.1. Given a pair of entities shown in Figure 2, the edit
distance on the attribute ay address is 1, where the right entity can
be transformed from the left one by inserting the token “ne” after
the token “rd””. The edit distance between each pair of attributes is
5,1,0,0,4,1, respectively. The edit distance between the two entries
is5+1+0+0+4+1=11and thereare 6 X2X1X1X5X2 =120
possible candidates in the search space.

Based on the above discussion, we can formally define the search
problem as follows.

Definition 3.2. Given a pair of entity p = (Er, Eg) and a black-box
EM model M, the problem of explaining EM aims at finding a set of
explanations P C ®(p) satisfying that Vp’ € P, M(p) # M(p’) and
for any candidate p”” € ®(p)—Pandp’ € P,ED(p’,p) < ED(p”, p).

Note that the above definition captures finding a set of (more
than 1) counterfactual explanations. The number of explanations,
i.e. the carnality of P in above definition is a hyper-parameter and
can be set by the user based on the real application scenario.

3.2 Greedy Algorithm

Next, we introduce the search algorithms for finding counterfactual
explanations using the search space and distance metrics defined
above. For negative pairs, we will use all three edit operations:
insertion, deletion and substitution; for positive pairs, as the set
of transformations should make the two entries more dissimilar,
we only use the deletion operation, i.e. delete a token at one time.
Suppose each entity entry has n attributes, then a state in the
search space is an n-dimensional vector where the value of the i-th
dimension is the number of edit operations applied on the corre-
sponding attribute. To reduce the potential computation overhead,
we just apply the edit operations on each attribute sequentially and
do not enumerate the combination of them. There are potential
optimization opportunities in this step, e.g., assigning weights to
tokens or using external knowledge to decide the order to search
the attributes. Due to the space limitation, we will just describe the
default approach and leave further optimizations as future work.

Algorithm 1: Greedy(p, M, K)
Input: p: The pair of entity entries; M: The black box model;
K: The number of explanations to be collected
Output: P: The set of explanations
1 Initialize P < 0;

2 fori=1tondo
3 L Compute the edit distance ED(a{‘, af);

4 Formulate ®(p) based on {ED(a{.‘, a?)}ign;
5 Sort ®(p) in the ascending order by the number of edit

operations;
¢ foreach state in ®(p) do
7 Generate the candidate p’ from the state;
8 if M(p) # M(p’) then
9 | P—PuU{p'};
10 if |P| == K then
11 ‘ return P;

12 return P;

Following this route, we then propose a greedy algorithm to
traverse the search space in Algorithm 1. We first initialize the
result set P as an empty set (line 1). Then we calculate the edit
distance between each pair of attributes in the left and right entries
of p, respectively (line 3). As mentioned before, if M(p) is 1, we will
only use deletion to make two attributes more dissimilar and the
computation cost is O(n) then. After obtaining the edit distance
between each pair of attributes, we can then construct the search
space by enumerating the state vectors. Since we want to find the
counterfactual explanations that are most similar with the original
instance, we sort the state vectors in ascending order by the total
number of operations applied in all dimensions of the state vector
(line 5). If there is a tie, we prioritize the state vectors with fewer
attributes. Then we generate the candidate from each state vector
and evaluate it with the black-box model. If the prediction is flipped,
then we add the candidate into the result set (line 9). If we have
collected K results (line 11) or finish traversing the search space
(line 12), the search process will end.

Example 3.3. We look at the pair in Figure 2 again. We will start
with the state vectors with 1 edit operation in total, i.e. (1,0, 0, 0, 0, 0).
To generate the candidate from it, we need to apply one edit opera-
tion on attribute “name”, where it should be the deletion on token
“cafe”. Then we get the candidate as ritz-carlton buckhead, 3434
peachtree rd., atlanta, 404-237-2700, ext 6108 international, 89 (differ-
ent attributes are separated with comma.) and will evaluate it using
the black-box model M to decide whether it can flip the prediction
on p. Then we move to the next state vector (0, 1,0, 0, 0, 0) with 1
operation in total, which generates the candidate by inserting the
token “ne” in the end of the “address” attribute.

3.3 Optimization via Binary Search

Although the greedy algorithm can correctly return the counter-
factual explanations with the fewest edit operations, it requires
enumeration of the search space resulting in a large computational
overhead. This cost can be reduced by approximations. Our opti-
mization is based on the observation that during the search process,
the target model M is approximately monotonic along each dimen-
sion of the state vectors. This means that for each attribute q;, the
more edit operations we apply, the more likely that the prediction
M(p’) will be “pushed” to the right direction, i.e., M(p’) — 1 if
M(p) = 0 or vice versa. This is based on the assumption that the
model M is “reasonable”, meaning that increasing the similarity be-
tween the left and right values of an attributes a; will only increase
the chance of M predicts positive, and vice versa.

Under this assumption, when looking at the d-th dimension of
a state vector with values on the other dimensions fixed, if the
prediction M(p”) with x edit operations cannot flip the original
prediction, then applying 0 to x — 1 operations will not flip the
prediction either. In other words, it could help accelerate the search
process if such states can be skipped. Based on this observation, we
come up with the following binary search algorithm.

The binary search based approach is shown in Algorithm 2. The
initial first steps are similar to those in the greedy algorithm. The
difference lies in that we use binary search to traverse the search
space. We denote by Search(A, Ib, ub, num) a function call to the
binary search procedure. The input arguments consist of:

e A: the set of attributes to be searched on.

e [b and ub: the set of lower bounds and upper bounds of all in-
volved attributes to be searched.

e num: the number of involved attributes.

The Search function works as follows: it starts from the state vector
where the value of dimension d equals %(d.lb + d.ub) and gener-
ates the corresponding candidate p’. If p’ can flip the prediction
(i.e, M(p’) # M(p)), we will add the candidate into the results
and decrease the upper bound. Otherwise, it means that more edit
operations need to be applied so we will increase the lower bound
in a binary search manner. The same process keeps iterating on
each attribute until there is no more candidate left in between the
lower and upper bounds, i.e. until the lower bound is no smaller
than the upper bound on all attributes in A.

Here we enumerate the state vectors in the ascending order of
the number of attributes involved in the computation. When only
one attribute is involved, we directly perform binary search on
that attribute (line 7). If the number is larger than 1, we need to

Algorithm 2: Binary Search(p, M, K)
Input: p: The pair of entity entries; M: The black box model;
K: The number of explanations to be collected
Output: P: The set of explanations
1 Initialize P < 0;

2 fori=1tondo
3 L Calculate the value of ED(a{.“, af);

4 forj=1tondo

5 if j = 1 then

6 fori=1tondo

7 | P« PUSearch({a;},0, {ED(at,)}, 1);
8 else

9 G <« Enumerate all combinations with j attributes;
10 foreach G € G do

11 B.lb «— 6;

12 foreach a; € G do

13 L B.ubli] « ED(a{.‘, a?);

14 P « P U Search(G, B.lb, B.ub, j);

15 if |P| > K then

16 | ‘ return P;

17 return P;

enumerate all possible combinations of attributes (line 9). For each
combination G, we first initialize the lower and upper bounds on
each dimension (line 13). Then we start from the middle point where
the value on each dimension is half of the edit distance between
the two attributes and iteratively perform binary search on each
involved attribute until the Search function terminates (line 14).
The overall stopping condition is the same as that of Algorithm 1.

Note that the above binary search based approach cannot guaran-
tee to return the exact results with the fewest edit operations. This
is because the algorithm enumerates the candidates in ascending
order of the number of involved attributes instead of the number
of operations. Nevertheless, we will show later in the experiments
that explanations discovered by this approach have comparable or
even better quality compared to the ones returned by the greedy
approach. In fact, we notice that the new enumeration strategy
can provide a more diverse set of explanations. We expect that
this property can benefit certain applications. Thus, the binary
search version is also a reasonable alternative to the exact greedy
algorithm in terms of explanation quality.

Example 3.4. Suppose we are at the point of checking the com-
bination of attributes “name”, “type” and “class”. Since the edit
distance on these attributes are 5, 4 and 1, respectively, the total
number of state vectors to be checked is 6 X 5 X 2 = 120. By ap-
plying the binary search strategy, we start from the state vector
(2,0,0,0,2,0), with the lower bound of each attribute as 0 and upper
bound as 5,4,1, respectively. If the corresponding candidate cannot
flip the prediction, we will change the lower bound of each attribute
one by one: first we set the lower bound of “name” to 3 and move
on to the state vector (4,0,0,0, 2,0). Suppose now that the corre-
sponding candidate can flip the prediction, we stop at searching this

attribute and add candidates corresponding to both (4,0, 0,0, 2, 0)
and (5,0,0,0,2,0) into the result set. Next, we will set the lower
bound of “type” to 3 and start from the state vector (2,0, 0,0, 3, 0)
in a similar way. Since this process is performed recursively, there
is also a search path starting from (4, 0,0, 0, 2,0) by varying the
values in the last two attributes. In this way, the number of state
vectors to be checked will be much smaller than 120, the carnality
of search space.

4 EVALUATION FRAMEWORK

4.1 Methodology

A key challenge in Explainable AT (XAI) is the evaluation of ex-
planations. While many popular model explanation tools such as
LIME [30] and SHAP [21] have been developed and widely ap-
plied, the community has not yet reached a consensus on how to
rigorously evaluate different explanation methods. Some general
guidelines [7] (also see Chapter 3.5 of [23]) exist such as evaluating
expressiveness, fidelity, comprehensibility, etc. of the explanations.
However, it has not been formalized how each aspect can be quan-
titatively calculated.

In the context of EM applications, the evaluation task only gets
more challenging because of the diverse format of explanations.
Classic methods like LIME and SHAP output explanations in the
format of feature importance, i.e., they associate a weight to each
token in the entity entries. These weights can further be aggregated
into attribute importance such as in [5]. Counterfactual explana-
tions, as we describe in Section 3, come in the format of modified
counterfactual examples from a customizable search space. Unlike
some traditional tasks from NLP and CV like text/image classifi-
cation, there is not a well-defined format of explanations for EM
applications. As a result, it is not feasible to create ground truth
explanations via human annotation.

In Minun, we design an evaluation framework for Explainable
EM solutions (i.e., explainers) following a recent trend developed
in the NLP field [15, 29]. To quantitatively evaluate the quality
of explanations, Hase and Bansal [15] proposed to measure by
how much these explanations can help “students” to simulate the
target model’s behavior (i.e., the “teacher”) on unseen examples. The
“students” can be human subjects drawn from the target users’
population as in [15], while Pruthi et al. [29] proposed to replace
human subjects with a machine learning model to avoid human
bias and to enable automatic evaluation.

In a nutshell, the experiment consists of two rounds of simulation
processes. Both rounds simulate a scenario where the student model
learns from unseen examples labeled by the teacher model. The only
difference between the two rounds is that the second round provides
the explanations as side information to the student in addition to its
training data while the first round does not. Intuitively, high-quality
explanations by definition should provide more insights to users
to help better understand the target model’s behavior. Therefore,
we can objectively quantify the quality of the explanations by the
performance gain (i.e., improvement of F1 scores for EM) when the
explanations are present versus when they are not. Figure 3 shows
a high-level view of the experiment design.

We formally describe the evaluation process in Algorithm 3. The
process starts with taking an unlabeled dataset D and annotating

Dataset
(Drrain, Drest)

Dataset (aug)
(D’rrain, Drest)

Figure 3: Evaluation Framework

Annotate

Teacher Model
T

The model to be
explained

Learn to mimic

e the teacher
yplai
EAugme," t

LIME, Shap, Minun, etc.

F1(Drest, S7)

Algorithm 3: Teacher-Student Simulation Process.

Input: A target teacher EM model T;
An unseen, unlabeled EM dataset D;
An Explainer E (e.g., LIME, Minun); A transformation operator aug
Variables :A student model S;
Number of training epochs n_epoch;
Learning rate n
Output: AFj, the measured explanation quality
/* Annotate and split D into training and test sets */
D « annotate(D, T);
Drrain, Drest < SP“t(D) 5
/* Round 1: no explanation */
Initialize the student S;
for ep =1 ton_epoch do
5 Randomly split Dryain into mini-batches {By,...Bp};
6 for B € {By,...B,} do

-

)

w

'

/* Back-prop to update S */
7 L « CrossEntropy(S, B);
8 S « back-propagate(S,n, 9.L/3S);
/* Round 2: with explanation */

9 Re-initialize the student S’;

10 for ep =1 ton_epoch do

1 Randomly split Dryain into mini-batches {By,...Bp};

12 for B € {By,...B,} do

/* Augment the batch B using the explanations

(see Table 1) */
13 Bayg < BU aug(B,E(B));
/* Back-prop to update S’ */
14 L « CrossEntropy (S, Baug);
15 S’ « back-propagate(S’,n, 9.L/3S);

6 return AF; = Fi(Drest, S,) — F1 (Drest, S);

-

it with match/unmatch labels using the target (teacher) model T
(Line 1). The dataset is further split into training and test sets for
the student models S and S’. Note that D needs to be disjoint from
the training set for the target T to avoid any label leakage via the
explanations. The first round is a standard training loop of an EM
classifier (Line 3-8). The student S is updated via back-propagation
for a fixed number of epochs (or until convergence).

The second round (Line 9-15) is the same training loop except
that in Line 13, it uses the explainer E (e.g., LIME, SHAP, Minun)
to augment each example of the training batch B. This is done by a
special data augmentation operator aug that augments the batch
with knowledge in the explanations E(B).

Augmentation operator. The operator aug needs to be carefully
designed to inject the explanations as side information for training.
We achieve this goal by drawing the connection between expla-
nations and data augmentation. Indeed, one can easily transform
different formats of explanations into additional training examples
for EM. We provide some examples next and they cover the various
EM explainers that we will evaluate:

o For counterfactual explanations, a straightforward transforma-
tion is to add the counterfactual examples generated by E into
the training set (with their labels flipped).

o For token-level explanations (e.g., the default format of LIME and
SHAP) where explanations E(B) assign a weight to each token,
we consider a transformation that removes the top-p% weighted
tokens from each entity entry. We expect that the removal will
cause a matched pair to become non-match or vice versa.

o For attribute-level explanations such as [5] where E(B) assigns
weights to attributes of entity entries, we consider two transfor-
mations: attribute removal and attribute copy. Attribute removal
removes the attribute of the highest weight from both the left and
right entity entries. The copy operator takes the top-weighted at-
tribute and copies the value of the attribute from the left entry to
the right entry or vice versa. We expect these two operators can
turn a non-match pair into a match by increasing the similarity
of the entries.

We summarize the used operators in Table 1. For the token-level
and attribute-level transformations, we use the teacher model T to
re-label each transformed instance to ensure the correctness of its
label. When multiple transformations are available, we prioritize
operators that lead to counterfactual examples (i.e., with flipped
labels as T predicts) and uniformly sample from all possible options.

Table 1: Transformations for each explanation type.

Exp. type Operator(s)

Counterfactual Add counter examples to training batch

Token-level Remove the top-[10%, 30%, 50%, 70%] weighted tokens
Remove the top weighted attr from left/right entries
Copy the top weighted attribute from left — right (or <)

Attribute-level

Finally, we can return the performance difference AF; =
F1(Dtest, S”) — F1(Drest, S) of the two rounds in F1 scores as the
performance measure of the explainer E.

4.2 Experiment Setup

Next, we introduce detailed settings of the experiment including
datasets, baselines, and hyper-parameters.

Datasets. We consider 5 EM datasets from the DeepMatcher repos-
itory!. We list the details of the datasets in Table 2. Each dataset
provides ~8k to ~22k labeled pairs (Train+Valid) for training the
target models. For training the student models for explanation eval-
uation, we split the original test sets (Test) into the training and test
sets of the student models, according to the 1:1 ratio (S-Train and
S-Test). Note that we do not use the rest of datasets in the Deep-
Matcher repository because they do not have large enough test sets
to create sufficient training instances for the student models.

Uhttps://github.com/anhaidgroup/deepmatcher/Datasets.md

Table 2: Statistics of EM datasets.

Datasets Train+Valid Test S-Train S-Test %pos
Abt-Buy (AB) 7,659 1,916 958 958 10.74%
Amazon-Google (AG) 9,167 2,293 1,146 1,147 10.18%
DBLP-ACM (DA) 9,890 2,473 1,236 1,237 17.96%
DBLP-Scholar (DS) 22,965 5,742 2,871 2,871 18.63%

Walmart-Amazon (WA) 8,193 2,049 1,024 1,025 9.39%

Models to be explained. In the experiments of this paper, we
choose Ditto [19] as the target EM model to be explained. Ditto is
based on pre-trained Transformer models and is by far the state-
of-the-art learning-based solution on the 5 EM datasets above.
Transformer-based models are also known to be complex which
imposes new challenges to explanation methods both in scalability
and effectiveness. Specifically, we chose the default RoBERTa vari-
ant of Ditto without the data augmentation or knowledge injection
optimization. There is no doubt that our work can also be applied
to explain other deep learning based EM models.

We trained each model for 15 epochs with a learning rate of
3x107° with batch size 64 and chose the checkpoint of the highest F1
score on the validation set. Table 3 shows the F1 scores of the target
models on the test sets. These numbers match with the original
performance numbers reported in [19].

Table 3: Target models’ (Ditto-RoBERTa) performance.

Dataset AB AG DA DS WA
F1 88.89 7140 98.66 9546 86.56

Explainers. We report the results of 4 explanation methods applied
to the target EM models:

e LIME [30]: LIME is a widely used method for generating black-
box explanations in the format of feature importance by learning
local surrogate models near the target instance. Since the original
LIME does not support matching tasks like EM, we followed [5]
to obtain both token weights and aggregate them into attribute
weights by averaging. We output explanations in the format of
top-p% tokens and top attributes.

e SHAP [21]: SHAP follows a similar paradigm as LIME with the
additional properties that the feature weights represent “contri-
butions” to the predictions in a Game-Theoretic principle. We
follow the same pattern to extend SHAP to EM. Both LIME and
SHAP perform the transformations in Table 1 to augment the
student training set (S-Train) during the evaluation process.

o CF-baseline: We also consider baseline counterfactual expla-
nation methods based on exhaustive search. This baseline enu-
merates (1) all 3-grams in the input sequence and (2) all entity
attributes to see if removing the 3-gram or copying the attribute
from left to right can result in a counterfactual example. It ran-
domly selects a counterfactual example if multiple ones exist. We
denote this baseline by Remove+Copy. Another baseline that only
does the 3-gram removal is denoted by Remove.

e Minun: For our own method, we implement two variants: Minun
(Greedy) is the method using a greedy algorithm to traverse the
search space introduced in Section 3.2; while Minun (Binary)
employs the optimization of binary search in Section 3.3.

For our own methods, we set K = 10 empirically. Besides, to make
carnality of Dry,jn equal to that of the original training set, for each
pair we only select one explanation from the K results generated
by the algorithms to obtain the training instance. Specifically, we
select the one with the smallest number of edit operations. If there
is a tie, we will choose the one with the highest confidence score
of prediction.

Since it is non-trivial to extend the counterfactual explanation
approaches proposed in [12, 32] to the EM setting, we excluded
them from the comparison.

Student models. We design the student model also as pre-trained
Transformer models in our experiments. We choose the DistilBERT
variant of Ditto. For each round of the simulation (Algorithm 3), we
set the learning rate to 3 X 1072, batch size to 64, and the number
of epochs to 40. Since there is no validation set, we select the
checkpoint with the highest training F1 score and report the F1
on the S-Test set. We then follow the simulation process to report
the relative improvement (AF;) as the performance metrics for
each evaluated explanation method. We use a less competitive EM
model to make the relative improvement given by each explanation
method more observable. In practice, we believe that the student
model should be chosen to match the cognitive power of the target
user population.

We implemented Minun and the evaluation framework using
PyTorch and the Transformers library. We ran all experiments in a
server machine with a configuration similar to a p4d.24xlarge AWS
EC2 machine with 8 A100 GPUs.

5 RESULTS
5.1 Performance Gain of the Student Models

We follow the evaluation process and settings in Section 4 to obtain
the results shown in Table 4.

We have the following observations: Firstly, the two methods
LIME and SHAP adapted from explainable AI do not perform well
in explaining the EM models. The average performance gains on F;
score brought by their explanations are only 0.91 and 0.32, respec-
tively. The reason could be that since they are not initially designed
for entity matching, it is difficult for their token-level explanations
to capture the pairwise matching signals within attributes, which
are key to EM explanations. As a result, they provide less useful
information for the student model. Indeed, as we inspect the exam-
ples generated by LIME or SHAP, only 14.1% or 13% of them are
counterfactual respectively.

On the other hand, both methods of Minun achieve promising
results in improving the F; score, which are 6.65 and 8.9 on average,
respectively. The higher performance gain mainly lies on that our
methods define the explanation as a transformation from one entity
to another, which naturally include the pairwise matching infor-
mation. Besides, Minun can provide signals from both token and
attribute levels. Note that both methods fail to improve on the DA
dataset. This might be caused by a characteristics of this dataset:
the input entries typically follow specific formatting patterns de-
pending on the data source (DBLP or ACM). The edit operations
by Minun can violate such patterns by inserting new tokens which
potentially introduce noise to the training set of the student model,

while the remove and copy operators by LIME or SHAP will not
cause such violations.

Finally, Minun (Binary) outperforms Minun (Greedy) in most
settings. The reason might be that since Minun (Binary) traverses
more parts of the search space and Minun (Greedy) tends to ter-
minate after finding enough results locally, the explanations by
Minun (Binary) are usually more diverse. Consequently, it could
provide more useful information to the student model. We expect a
diversified version of Minun (Greedy) to match the performance of
Minun (Binary).

We also conduct experiments to compare against the two base-
line counterfactual explanation approaches (see Section 2.3 and Sec-
tion 4.2). Recall that Remove generates explanations by randomly
removing a text span with length 3; Remove+Copy also considers
copying tokens in the target attribute from one entity entry to an-
other so as to turn the unmatched pairs into match ones. The results
are shown in Table 5. We can see that the performance gains by the
greedy and binary search based approaches are both significantly
higher than the two baseline counterfactual approaches. This result
illustrates that the generalized, finer-grained search space indeed
introduces more insightful explanations for the student model by
providing a richer set of augmentation operators. Defining the right
search space is essential for explainable EM techniques to generate
high-quality explanations.

5.2 Efficiency

Next, we evaluate the efficiency of the proposed methods. To eval-
uate the efficiency of each method, we look at two metrics: the
average execution time per instance and the average number of
calls of the teacher model per instance. An efficient explainer should
be able to find the explanation in a shorter time and fewer infer-
ences over the teacher model. The results of the average execution
time are shown in Figure 4. We can see that the greedy algorithm
is not so efficient due to the high computation cost in the linear
scan of the candidates in the search space. Meanwhile, LIME and
SHAP avoid scanning the search space since they find candidates
using random sampling. With the help of binary search techniques,
the efficiency of Minun is substantially improved and even outper-
forms LIME and SHAP. The results of the average number of calls
are shown in Figure 5. We can see that LIME and SHAP require
>3x more inferences over the teacher model. This means that the
efficiency advantage of Minun will only be larger in a no-GPU com-
puting environment where the inference cost will dominate. The
saving of LIME and SHAP’s execution time compared with Minun
mainly lies in that they do not need to construct and traverse the
whole search space as in Minun.

5.3 Case Study

Next, we demonstrate the effectiveness of Minun using an example
from the Abt-Buy dataset. Figure 6 shows the explanations gen-
erated by LIME, SHAP, and Minun. The example consists of two
product records of Canon ink cartridges. Although the two records
look similar, they have different product IDs (cI52 vs. cli-8pc) and the
right entry is specifically cyan ink cartridges. The Ditto-RoBERTa
model correctly predicts this pair as an “unmatch” pair.

Table 4: Performance gains (AF; Score) of the student models (DistilBERT-Ditto) on 5 EM benchmark datasets.

Dataset LIME SHAP Minun (Greedy) Minun (Binary)
w/oexp w/exp Ascore w/oexp w/exp Ascore w/oexp w/exp Ascore w/oexp w/exp A score
AG 71.16 68.15 -3.04 67.82 71.79 +3.97 63.25 69.81 +6.56 63.24 70.81 +7.57
DA 97.77 98.18 +0.41 96.25 97.75 +1.50 98.18 97.00 -1.18 98.18 97.33 -0.85
DS 93.80 94.07 +0.27 93.15 93.86 +0.71 94.22 95.86 +1.64 94.21 96.62 +2.41
WA 60.98 61.90 +0.93 58.16 54.65 -3.51 60.11 78.97 +18.86 60.11 84.11 +24.00
AB 62.86 69.77 +6.91 62.86 63.75 +0.89 72.25 79.64 +7.39 72.25 83.64 +11.39

Table 5: Comparison of AF; score with baseline counterfactual ex-
planation methods (Remove and Remove+Copy).

Dataset Remove Remove+Copy Minun (Greedy) Minun (Binary)
AB +2.74 -2.95 +7.3 +11.3
AG -1.11 +0.24 +6.6 +7.6
DA +0.31 +0.94 -1.2 -0.9
DS +3.13 +15.22 +1.7 +24.0
WA +3.84 +11.41 +18.8 +11.3

Average +1.78 +4.97 +6.2 +8.9

Shap = Lime m CF-Baseline ® Minun (Greedy) ® Minun (BS)
2.0

2 15
o)
£
F 10
D
£
E 05
3
12

oo Ml 1§ , | III |
AG DA DS WA AB

Figure 4: Results of Efficiency: Execution Time. The binary search
optimization of Minun significantly improves its running time effi-
ciency, outperforming both SHAP and LIME.

Shap ' Lime m CF-Baseline ® Minun (Greedy) ® Minun (BS)
800
« 600
S
< 400
o
<]
= 200
H*
0 ams III III A [ll.
AG DA DS WA AB

Figure 5: Results of Efficiency: Number of Calls. Minun requires
significantly fewer number inference calls to the target models.

The baseline LIME and SHAP fail to generate insightful explana-
tions for this example. With the top-30% highest weighted tokens,
LIME can identify the ID span “cl52” as part of the explanation, but
does not report “photo cyan” or “cyan ink” in the name/description.
SHAP is able to identify useful words like “c152”, “cli-”, and “cyan” in
its explanations. However, tokens “cli-” and “cyan” were not shown
with a higher weight threshold (i.e., at top-10%). As a result, the ex-
planation will include tokens such as “canon”, “and”, and “cartridge”

which are less useful. Neither explanations given by LIME or SHAP
are counterfactual, that is, the target model still predicts the input
pair as “unmatch” after removing those highlighted tokens.

In contrast, Minun generates a concise and accurate explanation.
The counterfactual example consists of inserting the token “cli-8pc”
and “cyan” from the right entry to the name attribute of the left en-
try. These two changes alone are sufficient to flip the target model’s
prediction from “not match” to “match”. As such, the explanation
provides enough insight that the product ID and the ink color cause
the model to make a negative prediction.

Note that both LIME and SHAP identify the price attribute as
the explanation (25 vs. 13.99). Although this is a valid explanation,
we found in this dataset that the price difference feature is not
significant for this EM application. Only 16.7% of pairs have both
non-NULL price attributes. The average price difference for the
positive class is 19.4% while it is only 47.4% for the negative class. As
a result, it is correct for Minun to exclude price in its explanation.

6 RELATED WORK

6.1 Entity Matching

Entity Matching (EM) is an important data integration task that has
been extensively studied over the past decades [18]. There are two
main steps in an EM pipeline: blocking and matching. The blocking
step aims at reducing the number of potential comparisons. This is
realized by generating a small candidate set while retaining as many
real matches as possible. The matching step performs pairwise
comparisons within each block to identify matched entities.

Many previous studies aimed at developing effective matching
strategies, including rule-based and machine learning-based ap-
proaches [26]. Recently, deep learning methods have been widely
adopted in EM and achieved very promising results. DeepER [9]
and Deep Matcher [24] employed the Recurrent Neural Network
(RNN) models to perform entity matching. Seq2SeqMatcher [25],
MPM [11], and HierMatcher [10] improved the performance of
matching between heterogeneous data sources by applying addi-
tional alignment layers. Some recent studies [4, 19, 28, 38] further
adopted the pre-trained language models such as BERT for entity
matching. Among them, Ditto [19] integrated the pre-trained lan-
guage models with data augmentation techniques and achieved the
state-of-the-art performance. The EM problem has also been stud-
ied by introducing different kinds of machine learning paradigms,
such as probabilistic models [40], active learning [17], and meta-
learning [22].

Name (left)

Original canon photo ink cartridge cl52

LIME canon photo ink cartridge cl52

canon photo ink

SHAP canon photo ink cl52 with pixma ip6210d

canongli-8pc photo cyaitink canon photo ink cartridge cl52 compatible with

Minun -~ T =-

Description (left)

canon photo ink cartridge cl52 compatible with
pixma ip6210d and ip6220d printers

canon photo ink cartridge cl52 compatible
with pixma ip6210d and ip6220d printers

pixma ip6210d and ip6220d printers

Price . Description Price
(left) Name (right) (right) (right)

canon cli-8pc photo cyan ink photo cyan 13.99

cartridge 0624b002
canon cli-8pc photo cyan ink

25

% cartridge 0624b002 photo cyan | 13.99
compatible 8pc
ip6220d printers cartridge 0624b cyan | 13
o5 Canon cli-8pc photo cyan ink photo cyan | 13.99

cartridge 0774'5(50—2

Figure 6: An example with explanations from the Abt-Buy dataset. For LIME and SHAP, we highlight the top-30% highest weighted tokens in

their explanations (in red and

respectively). Minun generates counterfactual explanations that inserted “cli-8pc” and “cyan” to the

“Name” attribute (right — left), highlighted in green. Minun discovers that inserting these two tokens causes the EM model to predict “Match”

instead of “Unmatch”, resulting in a concise and accurate explanation.

6.2 Explainable Entity Matching

Since deep learning has been widely adopted in EM applications,
many efforts have been paid to explain the results of such DL-based
approaches for EM. A high-level discussion about the design guide-
line is made in [35]. ExplainER [8] provided a tool to visualize the
entity matching results. Mojito [5] extended the LIME method to
explain the output of matching models. Landmark [2] improves
Mojito by adopting a more sophisticated copy mechanism to pro-
vide more accurate and interesting explanations for entity pairs.
LEMON [3] further came up with a new unit called attribution to
find explanations with proper granularity. All these approaches are
simple extensions of the LIME approach [30], which is designed for
explaining classifiers over a single instance. For matching tasks like
EM, they cannot fully leverage the rich similarity and dissimilarity
signals from the textual attributes. Besides, they failed to provide
an objective quantitative evaluation method and thus it is difficult
to judge the quality of explanations generated by them.

6.3 Responsible Data Management

Along with the popularity of explainable Al [1], there is an increas-
ing requirement for responsible data management [34] in many
real applications. Some studies in the NLP field tried to explain
the results of attention modules [33, 39] and Transformer-based
language models [6, 37] with the distribution of attention weights.
However, since the attention modules are built on top of several non-
linear transformations, it is rather difficult to make a reasonable
association between the model outcome and attention weights [16].

There has been a rich line of works that aim at providing in-
terpretable and explainable results for black-box ML models [14].
LIME [30] proposed to use a simpler linear model to provide local
explanations for black-box models. Anchors [31] generated the
explanations in the format of if-else rules. SHAP [21] provided a
unified Game-Theoretic framework to explain the results of mul-
tiple kinds of models and applications. The above methods focus
on explaining the classifiers over a single instance and cannot be
directly applied to deal with EM applications that require pairwise
classification over records with multiple attributes.

Some recent studies aimed at finding counterfactual examples to
explain learning-based data management applications. Geco [32]
identified the nearest neighbor of counterfactual examples using

a generic algorithm. Lewis [12] reached this goal by modeling the
problem as causal inference. Nevertheless, these approaches (i)
only support records with numerical and categorical attributes; (ii)
cannot model the problem of pair classification. Thus, it is rather
challenging to apply them in explaining black-box EM models.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose Minun, a model agnostic framework to
provide local explanations to black-box entity matching models. We
propose a novel definition of explanations based on counterfactual
examples. Each explanation is formed by a sequence of modifica-
tions to the input entries such that they can flip the target EM
model’s original prediction. We utilize token-level edit distance
between a pair of entity entries to describe the search space for
counterfactual explanations and then develop two efficient algo-
rithms to find the results. We further propose a general evaluation
framework that enables quantitative evaluation of the quality of
explanations by Minun or other existing explanation methods. The
results of our empirical evaluation show that Minun generates high-
quality explanations while being computationally more efficient.

For future work, we plan to extend Minun to a broad range of
data integration (DI) tasks beyond EM. We will explore the connec-
tions between data augmentation and explanations. More specif-
ically, we would like to generalize the search space definition of
Minun by a declarative framework for specifying data transforma-
tions that can be interpreted as explanations, e.g., deleting certain
informative tokens, replacement of an ID span, applying a data
dependency, etc. Next, since we can now evaluate the quality of
explanations by augmenting the student model’s training data, we
can formulate the task of finding explanations as a task of finding
effective data augmentation policies. It is possible that we can use
the signal from the student model to guide the search of the most
effective transformations, using a meta-learning framework similar
to Rotom [22]. We expect this new framework can support explana-
tions of a variety of data integration and preparation tasks including
entity matching, information extraction, and data cleaning.

REFERENCES

[1] A.B. Arrieta, N. D. Rodriguez, J. D. Ser, and et al. Explainable artificial intelligence
(XAI): concepts, taxonomies, opportunities and challenges toward responsible
Al Inf. Fusion, 58:82-115, 2020.

(2]

[10]

[11]

(12

[13]

[14]

[15

[16]

[17

[18]
[19]

[20

[21]

A. Baraldi, F. D. Buono, M. Paganelli, and F. Guerra. Using landmarks for explain-
ing entity matching models. In EDBT, pages 451-456, 2021.

N. Barlaug. LEMON: explainable entity matching. CoRR, abs/2110.00516, 2021.
U. Brunner and K. Stockinger. Entity matching with transformer architectures
- A step forward in data integration. In A. Bonifati, Y. Zhou, M. A. V. Salles,
A.Bohm, D. Olteanu, G. H. L. Fletcher, A. Khan, and B. Yang, editors, EDBT, pages
463-473, 2020.

V. D. Cicco, D. Firmani, N. Koudas, P. Merialdo, and D. Srivastava. Interpreting
deep learning models for entity resolution: an experience report using LIME. In
aiDM@SIGMOD, pages 8:1-8:4, 2019.

K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What does BERT look at?
an analysis of bert’s attention. In BlackboxNLP@ACL 2019, pages 276286, 2019.
F. Doshi-Velez and B. Kim. A roadmap for a rigorous science of interpretability.
CoRR, abs/1702.08608, 2017.

A. Ebaid, S. Thirumuruganathan, W. G. Aref, A. K. Elmagarmid, and M. Ouzzani.
EXPLAINER: entity resolution explanations. In ICDE, pages 2000-2003, 2019.
M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and N. Tang. Dis-
tributed representations of tuples for entity resolution. PVLDB, 11(11):1454-1467,
2018.

C.Fu, X. Han, J. He, and L. Sun. Hierarchical matching network for heterogeneous
entity resolution. In C. Bessiere, editor, IJCAL pages 3665-3671, 2020.

C. Fu, X. Han, L. Sun, B. Chen, W. Zhang, S. Wu, and H. Kong. End-to-end
multi-perspective matching for entity resolution. In S. Kraus, editor, [JCAL pages
4961-4967, 2019.

S. Galhotra, R. Pradhan, and B. Salimi. Explaining black-box algorithms using
probabilistic contrastive counterfactuals. In SIGMOD, pages 577-590, 2021.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and
D. Srivastava. Approximate string joins in a database (almost) for free. In VLDB,
pages 491-500, 2001.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi.
A survey of methods for explaining black box models. ACM Comput. Surv.,
51(5):93:1-93:42, 2019.

P. Hase and M. Bansal. Evaluating explainable AI: which algorithmic explanations
help users predict model behavior? In ACL, pages 5540-5552, 2020.

S. Jain and B. C. Wallace. Attention is not explanation. In NAACL-HLT, pages
3543-3556, 2019.

J. Kasai, K. Qian, S. Gurajada, Y. Li, and L. Popa. Low-resource deep entity
resolution with transfer and active learning. In ACL, pages 5851-5861, 2019.
P.Konda, S. Das, P. S. G. C., A. Doan, and et al. Magellan: Toward building entity
matching management systems. PVLDB, 9(12):1197-1208, 2016.

Y. Li,]. Li, Y. Suhara, A. Doan, and W. Tan. Deep entity matching with pre-trained
language models. Proc. VLDB Endow., 14(1):50-60, 2020.

Y. Li, J. Li, Y. Suhara, J. Wang, W. Hirota, and W. Tan. Deep entity matching:
Challenges and opportunities. ACM J. Data Inf. Qual., 13(1):1:1-1:17, 2021.

S. M. Lundberg and S. Lee. A unified approach to interpreting model predictions.
In NIPS, pages 4765-4774, 2017.

[27]

(28]

[29]

(30]
(31]
(32]
[33]
(34]

[35]

[36]

(37]

(38]
(39]

[40]

Z.Miao, Y. Li, and X. Wang. Rotom: A meta-learned data augmentation framework
for entity matching, data cleaning, text classification, and beyond. In SIGMOD,
pages 1303-1316, 2021.

C. Molnar. Interpretable machine learning. Lulu. com, 2020.

S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Ar-
caute, and V. Raghavendra. Deep learning for entity matching: A design space
exploration. In SIGMOD, pages 19-34, 2018.

H. Nie, X. Han, B. He, L. Sun, B. Chen, W. Zhang, S. Wu, and H. Kong. Deep
sequence-to-sequence entity matching for heterogeneous entity resolution. In
CIKM, pages 629-638, 2019.

G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas. Blocking and filtering
techniques for entity resolution: A survey. ACM Comput. Surv,, 53(2):31:1-31:42,
2020.

R. Peeters and C. Bizer. Dual-objective fine-tuning of BERT for entity matching.
Proc. VLDB Endow., 14(10):1913-1921, 2021.

R. Peeters, C. Bizer, and G. Glavas. Intermediate training of BERT for product
matching. In F. Piai, D. Firmani, V. Crescenzi, A. D. Angelis, X.L.Dong, M. Mazzei,
P. Merialdo, and D. Srivastava, editors, DI2KG@ VLDB, 2020.

D. Pruthi, B. Dhingra, L. B. Soares, M. Collins, Z. C. Lipton, G. Neubig, and W. W.
Cohen. Evaluating explanations: How much do explanations from the teacher
aid students? CoRR, abs/2012.00893, 2020.

M. T. Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?": Explaining
the predictions of any classifier. In ACM SIGKDD, pages 1135-1144, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic
explanations. In AAAI pages 1527-1535, 2018.

M. Schleich, Z. Geng, Y. Zhang, and D. Suciu. Geco: Quality counterfactual
explanations in real time. Proc. VLDB Endow., 14(9):1681-1693, 2021.

S. Serrano and N. A. Smith. Is attention interpretable? In ACL, pages 2931-2951,
2019.

J. Stoyanovich, B. Howe, and H. V. Jagadish. Responsible data management.
PVLDB, 13(12):3474-3488, 2020.

S. Thirumuruganathan, M. Ouzzani, and N. Tang. Explaining entity resolution

predictions: Where are we and what needs to be done? In HILDA@SIGMOD,
pages 10:1-10:6, 2019.

S. Thirumuruganathan, N. Tang, M. Ouzzani, and A. Doan. Data curation with
deep learning. In EDBT, pages 277-286, 2020.

B. van Aken, B. Winter, A. Loser, and F. A. Gers. How does BERT answer
questions?: A layer-wise analysis of transformer representations. In CIKM, pages
1823-1832, 2019.

J. Wang, Y. Li, and W. Hirota. Machamp: A generalized entity matching bench-
mark. In CIKM, pages 4633-4642. ACM, 2021.

S. Wiegreffe and Y. Pinter. Attention is not not explanation. In EMNLP-IJCNLP,
pages 11-20, 2019.

R. Wu, S. Chaba, S. Sawlani, X. Chu, and S. Thirumuruganathan. Zeroer: Entity
resolution using zero labeled examples. In SIGMOD, pages 1149-1164, 2020.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Terminology
	2.2 Counterfactual Explanation
	2.3 Baseline Approaches
	2.4 Extending the search space

	3 Methodology
	3.1 Problem Definition
	3.2 Greedy Algorithm
	3.3 Optimization via Binary Search

	4 Evaluation Framework
	4.1 Methodology
	4.2 Experiment Setup

	5 Results
	5.1 Performance Gain of the Student Models
	5.2 Efficiency
	5.3 Case Study

	6 Related Work
	6.1 Entity Matching
	6.2 Explainable Entity Matching
	6.3 Responsible Data Management

	7 Conclusion and Future Work
	References

