
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2915

Combining Knowledge with Deep Convolutional Neural Networks
for Short Text Classification

Jin Wang†∗, Zhongyuan Wang‡∗, Dawei Zhang], Jun Yan]

† Computer Science Department, University of California, Los Angeles.
‡ Facebook Inc.

] Microsoft Research, Beijing, China.
jinwang@cs.ucla.edu; zhy@fb.com; {dawezh, junyan}@microsoft.com

Abstract
Text classification is a fundamental task in NLP ap-
plications. Most existing work relied on either ex-
plicit or implicit text representation to address this
problem. While these techniques work well for sen-
tences, they can not easily be applied to short text
because of its shortness and sparsity. In this pa-
per, we propose a framework based on convolu-
tional neural networks that combines explicit and
implicit representations of short text for classifica-
tion. We first conceptualize a short text as a set of
relevant concepts using a large taxonomy knowl-
edge base. We then obtain the embedding of short
text by coalescing the words and relevant concepts
on top of pre-trained word vectors. We further in-
corporate character level features into our model
to capture fine-grained subword information. Ex-
perimental results on five commonly used datasets
show that our proposed method significantly out-
performs state-of-the-art methods.

1 Introduction
Text classification is a crucial technology in many appli-
cations, such as web search, ads matching, and sentiment
analysis. Previous studies on text classification either rely
on human designed features [Wang and Manning, 2012] or
use deep neural networks on distributed representation of
texts [Conneau et al., 2016]. Despite the impressive advances
for sentences and documents, such methods still have limita-
tions for short texts:

• Unlike paragraphs or documents, short texts do not al-
ways observe the syntax of natural language.

• Short texts lack of contexts.

• Short texts are usually rather ambiguous because they
contain polysemes and typos.

Such characteristics pose major challenges in short text
classification. In order to overcome them, researchers need
to capture more semantic as well as syntax information from
short texts. A crucial step to reach this goal is to use more

∗This work is done when the authors were in MSRA.

advanced text representation models. According to the differ-
ent ways of leveraging external sources, previous text repre-
sentation models can be divided into two categories: explicit
representation and implicit representation [Wang and Wang,
2016].

• Explicit Representation For explicit approaches, a
given text is modeled following traditional NLP steps,
including chunking, labeling, and syntactic parsing. Re-
searchers create effective features from many aspects,
such as knowledge base, POS tagging and dependency
parsing. Although explicit models are easily understand-
able by human beings, it is difficult for the machine to
collect useful features for disambiguation. Besides, it
also suffers from the data sparsity problem. For exam-
ple, when an entity is missing in a knowledge base, we
cannot obtain any feature of it and thus an explicit rep-
resentation will fail to work.

• Implicit Representation In terms of implicit represen-
tations, the text is represented using Neural Language
Model (NLM) [Bengio et al., 2003]. An NLM maps
texts to an implicit semantic space and parameterizes
them as a vector. An implicit representation model
can capture richer information from context and facil-
itate text understanding with the help of deep neural
networks. However, implicit representations also have
some disadvantages: they perform poorly on new and
rare words. Besides, they ignore important relations
other than co-occurrence, such as IsA and IsProper-
tyOf. For instance, the word “angles” in text the Angles
won the World Series is the name of a baseball team.
However, an implicit model cannot capture the informa-
tion that Angles is a baseball team and will treat it as an
animal or a new word. We need additional knowledge to
fill this gap.

It is ineffective to use either explicit or implicit representa-
tions independently for short text classification. For explicit
models, the syntax and semantic information in short texts is
too subtle for traditional NLP approaches to capture. Some-
times implicit models do not work well either. In many real
applications, rare words like proper nouns occur frequently in
short texts. Moreover, as is stated in the previous work [Hua
et al., 2015], the IsA relation, which is missing in implicit
models, is crucial for short text understanding. Despite their



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2916

shortcomings, explicit and implicit representations are com-
plementary to each other as is shown in previous work [Hu
et al., 2016]: explicit knowledge such as logic rules can be
integrated into deep neural networks to regulate the learning
process. We can combine them to transform explicit knowl-
edge into neural models.

In this work, we propose a deep neural network that makes
the fusion of explicit and implicit representations of short
texts. We first enrich the information of short texts with the
help of an explicit knowledge base. Specifically, we associate
each short text with its relevant concepts in the knowledge
base. Next we combine the words and relevant concepts of
the short text to generate its embedding using a pre-trained
word embedding. Then we feed this word-concept embed-
ding into a Convolutional Neural Network (CNN) to learn
explicit knowledge from the joint embedding. To the best of
our knowledge, this is the first work that combines explicit
and implicit representation for short text understanding.

While implicit and explicit representation models can pro-
vide rich semantic features for short text understanding, they
still miss some semantic information. For example, given a
short text buy apple iPhone7, as “iPhone7” is a new word,
neither the knowledge base nor the pre-trained word embed-
ding will recognize it. Inspired by the character level lan-
guage model [Kim et al., 2016], we combine the input word-
concept embedding with a character-level embedding to ob-
tain more semantic features. We use a separate CNN with
only character embeddings as the input and concatenate its
outputs to that of the main network in the fully-connected
layer as the feature vector for the output layer. In this way, we
can acquire more subword information such as morphemes
that is missing in word-level embedding. In the above exam-
ple, the word “iPhone7” will propose characteristic features
similar to “iPhone”. As “i-Phone” is included in knowledge
base, we can capture the meaning of the new word “iPhone7”
in this way.

We use a separate Convolutional Neural Network with only
character embedding as the input and concatenate its outputs
to those of the main network in the fully-connected layer as
the feature vector for the output layer. In this way, we can
acquire more subword information such as morphemes that
is missing in word-level embedding.

The main contributions of this paper are summarized as
follows:

• We associate relevant concepts with short texts by lever-
aging explicit knowledge and generating the implicit
representation of the short text. To capture fine-grained
semantic information, we also integrate the character
level features into the joint embedding.

• We build a jointly model using Convolutional Neural
Network to learn the coalesced embedding and to per-
form classification.

• We conduct extensive experiments on five commonly
used datasets. The results show that our model signif-
icantly outperforms state-of-the-art methods.

2 Related Work
2.1 Short Text Understanding
Short Text Understanding has become a hot topic in recent
years. The most crucial step for understanding short text is
conceptualization. Previous studies rely on either external
knowledge bases [Song et al., 2011; Wang et al., 2015] or
lexical information [Hua et al., 2015] to get the concepts as-
sociated with the short text. To understand short text, another
important task is evaluating the similarity between two short
texts. This problem has been solved with either explicit rep-
resentation [Li et al., 2013] or implicit representation [Kenter
and de Rijke, 2015].

2.2 Text Classification
Traditional text classification methods rely on human-
designed features. The most widely used feature is to rep-
resent text as a vector of terms, namely “Bag-of-Words”.
Other studies mainly focus on generating more complex fea-
tures, such as POS tagging and tree kernel [Post and Bergsma,
2013]. The classifiers can be built using machine learning
algorithms such as Naive Bayes and Support Vector Ma-
chine [Wang and Manning, 2012]. For short text classifica-
tion task, previous studies focus on feature expanding [Shen
et al., 2006] by leveraging context information from search
engines. However, such methods have a serious problem of
data sparsity.

2.3 Neural Language Model
With the rapid development of distributed word representa-
tion and deep neural networks, many new ideas for traditional
NLP tasks have been proposed. The Neural Language Model
solves the data sparsity problem by representing words with
dense vectors [Bengio et al., 2003; Pennington et al., 2014].
The embedding vectors obtained through NLMs can capture
meaningful syntactic and semantic information and map se-
mantically similar words close in the induced vector space.
Recently there have been many studies on learning the repre-
sentation of texts with different granulates: [Hill et al., 2016]
focus on learning the embedding of a phrase, while [Palangi
et al., 2016],[Kalchbrenner et al., 2014] and [Le and Mikolov,
2014] focuses on learning the embedding of sentences. The
text embedding enables us to measure the similarity between
different texts by simply computing the distance between em-
bedding vectors.

With fixed-length embedding vectors as input, using deep
neural networks for various types of NLP tasks has gradually
become popular. [Socher et al., 2011] introduced an auto-
encoder using Recurrent Neural Network to capture the syn-
tax information of a sentence. [Socher et al., 2013] proposed
the Recursive Neural Tensor Network for sentiment analysis.
[Collobert et al., 2011] first use CNN with pre-trained word
embedding for text classification. [Kim, 2014] further im-
proves the performance by using multi-channel embedding.
[Zhang et al., 2015] and [Conneau et al., 2016] proposed very
deep neural networks with only character level information
as input. While such methods work well for large documents,
they perform poorly on short texts due to the limited informa-
tion provided by them.



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2917

3 Model Design
In this section, we present a joint model called Knowledge
Powered Convolutional Neural Network (KPCNN), using
two sub-networks to extract the word-concept and character
features. We first introduce the way to conceptualize short
texts with the help of a knowledge base. Then we describe
the model and show how to learn the features from the em-
beddings incorporating information from the word, concept
and characters.

3.1 Short Text Conceptualization
The first step of our work is short text conceptualization. We
reach this goal using an existing knowledge base, such as DB-
pedia, Yago, Freebase and Probase [Wu et al., 2012]. We
will use Probase in this paper1. Because compared with other
knowledge bases, Probase has a much broader coverage of
concepts about wordly facts. Besides, Probase contains prob-
abilistic information with which we can quantify many mea-
surements of short texts, such as popularity, typicality and
categorization. By leveraging the large number of IsA rela-
tions in Probase, we can get a list of concepts as well as their
relevance to the short text.

Here we denote the concept vector as C = {< c1, w1 >
,< c2, w2 >, ..., < ck, wk >}, where ci is a concept in the
knowledge base, and wi is a weight to represent the rele-
vance of the short text associated with ci. Given a short
text, we can obtain its concept vector using the conceptual-
ization API provided by Probase. It computes the concept
vector of a given short text using a novel knowledge-intensive
approach [Hua et al., 2015]. In Probase, the number of k
is set to 10. If there are more than 10 concepts, the top-
10 results will be returned. For example, given a short text
“CNOOC Signed a PSC with ROC”, we can get its concept
vector as {<client,0.9>, <channel,0.6>, <mythological
creature,0.6>, <international well-known enterprise,0.2>,
<chinese oil major,0.2>}.

3.2 Overall Architecture of the Model
After we get the results of conceptualization, we can com-
bine the knowledge of concepts with the embedding of short
texts. For the word and concept embedding, we use pre-
trained word embedding and keep them static. But as there is
no pre-trained embeddings for the character level, we should
allow the embedding of characters to be modified during the
training process. In this way, the character embedding can be
well-tuned while training the model. To this end, we propose
a two-branch model as shown in Figure 1. It has two com-
ponents: the upper sub-network is for the word and concept
embedding of the short text, and the lower sub-network is for
the character embedding. Both of them are CNNs. With such
a model, we can learn rich features from both the word level
and the character level, respectively.

The upper component consists of seven layers: one input
layer, two convolution layers, two pooling layers and two
hidden layers.

1The data is now public available as part of the Microsoft Con-
cept Graph: https://concept.msra.cn/

Input Layer. The input layer transforms the short text into
a matrix of embedding, denoted as W ∈ R(k+n)×m as the in-
put of the network, where n and k is the the maximum num-
ber of words and concepts, respectively. And m is the dimen-
sion of word embedding. We obtain W by concatenating the
embedding of words and concepts together: W = Ww⊕Wc.

Here Ww and Wc are the embedding of the words and con-
cepts, respectively. And ⊕ is the concatenation operation.
The way to construct Ww is rather straightforward: suppose
the short text consists of n words, and vwi ∈ Rm is an m-
dimensional vector of the ith word in the short text. We can
get Ww by simply concatenating them:

Ww = vw1 ⊕ vw2 ⊕ ...⊕ vwn (1)

To get the representation of Wc, we also need to consider
the weight of concepts at the same time. For each embedding
vector vci ∈ Rm of concept ci, we multiply it by the constant
wi to denote the weight of a given concept. Then we have:

Wc = w1vc1 ⊕ w2vc2 ⊕ ...⊕ wkvck (2)

If the short text or concept vector is not long enough, we
will use 0 as padding. We get the embeddings vwi and vci by
looking up the pre-trained word embedding.
Convolution Layer. The function of convolution layers
is to extract higher level features from the input matrix. To
get different kinds of features, we apply filters with different
sizes. Similar to many previous works, we fix the width of
each filter as m and treat the height h of it as a hyper param-
eter. Given a filter ω ∈ Rh×m, a feature si is generated from
a window of words and concepts [vi : vi+h−1] by:

si = g(ω · [vi : vi+h−1] + b) (3)

Here b ∈ R is a bias term. And g is a non-linear func-
tion. In this work we use ReLU as the non-linear function for
convolution layers. The filter is applied to all possible win-
dows of words and concepts in W to produce a feature map
s ∈ Rn+k−h+1. This process can be repeated for various fil-
ters with different heights to increase the feature coverage of
the model.
Pooling Layer. The function of a pooling layer is to fur-
ther abstract the features generated from convolution layer by
aggregating the scores for each filter. In this work, we apply a
max-over-time pooling operation over each feature map. The
idea is to choose the highest value on each dimension of vec-
tor to capture the most important feature. With pooling layers,
we can induce a fixed-length vector from feature maps.
Hidden Layer. In order to make full use of rich features
obtained from the pooling layers, we use a non-linear hidden
layer to combine different pooling features. We use tanh as
the activation function here in our work. In this layer, we
can also apply dropout [Hinton et al., 2012] as a mean of
regularization by randomly setting to zero a proportion of
elements of the feature vector.

Similarly, the lower subnetwork also consists of seven lay-
ers: one input layer, two convolution layers, two pooling lay-
ers and two hidden layers. The input of this subnetwork is a
sequence of encoded characters in the short text. The encod-
ing is done by first generating an alphabet of all the characters



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2918

Figure 1: Architecture of the Overall Model

in the dataset and then randomly initializing the embedding
of each character with mc dimensions. Then the sequence of
characters is transformed into a matrix Wc ∈ RL×mc . Here
L is a hyper parameter that limits the maximum size of the
sequence. Any character exceeding length L is ignored. In
this work we set the value of L to be 256.

Finally, we combine the output vectors of the two subnet-
works by concatenating them. Then we apply an output layer
on the joint vector to convert the output numbers into proba-
bilities for classification.

3.3 Training
We define all the parameters to be trained as a set Θ. Here
we denote the set of training data as X and the set of class
label as Y . For each x ∈ X , the network computes a score
s(y;x,Θ) for each class y ∈ Y . To transform the scores into
a conditional probability distribution in the output layer, we
use a softmax operation over the scores for all y ∈ Y:

p(y|x,Θ) =
exp(s(y;x,Θ))∑

∀τ∈Y
exp(s(τ ;x,Θ))

(4)

The training target of the model is to maximize the log-
likelihood over the training set with respect to Θ:

Θ 7→
∑
x∈X

log p(y|x,Θ) (5)

We use Adagrad [Duchi et al., 2011] to optimize the training
process. At the tth epoch, the parameters are updated as:

Θt = Θt−1 −
α√∑t
i=1 gi

gt (6)

where α is the learning rate and gt is the gradient at epoch t.
All the parameters are initialized from a uniform distribution,
we follow many previous studies to make such settings.

Table 1: A Summary of Datasets
Datasets #class Training/Test set Avg.

Len
TREC 6 5952/500 10
Twitter 3 8,204/3,005 19
AG News 4 120,000/7,600 7
Bing 4 31,383/3,488 8
Movie Review 2 8,530/2,132 20

Table 2: Hyper Parameters
Parameter Values
filter sizes upper:[3,4,5,6] lower:[6]

dropout rate 0.5
hidden layers dimension upper:100 lower: 50
embedding dimension m = 300 mc = 100

learning rate α = 0.01

4 Evaluation
4.1 Experiment Setup
To show the effectiveness of our model, we conduct exper-
iments on five widely used datasets: TREC, Twitter, AG
news, Bing and Movie Review. The details of each dataset
are listed in Table 1.

TREC. This is a question answering dataset 2. It involves 6
different types of questions, such as whether the question is
about a location, about person or numeric information.
Twitter. This is a set of tweets with 3 kinds of senti-
ments: positive, neutral and negative. The labels are added

2http://cogcomp.cs.illinois.edu/Data/QA/QC/



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2919

Table 3: Accuracy of Composed Models on Different Datasets
Model TREC Twitter AG news Bing Movie Review
WC + LR 52.8 57.57 61.56 74.48 60.44
BoW + SVM 85.66 56.23 72.7 80.33 77.52
CNN 89.33 57.24 86.11 96.2 81.52
CharCNN 76 44.96 78.27 85.64 77.01
WCCNN 91.21 57.87 85.57 96.22 83.77
KPCNN 93.46 59.84 88.36 99.17 83.25

by the original author of the dataset 3. We have preprocessed
this dataset for the ease of use in this work: We removed
the spams and quotes in the tweets. For tweets written in
other languages, we translate them into English using Google
Translator. We also remove the # hashtags that are not located
at the end of the message.
AG news. This dataset is adopted from [Zhang et al., 2015].
The original data consists of both articles and descriptions
of AG’s corpus of news. In order to test for short texts, we
remove the articles and only use the titles in our experiment.
Bing. This is a dataset of query logs adopted from [Wang
et al., 2014]. They are divided into 4 categories according to
their contents.
Movie Review. This dataset consists of one sentence
per comment on movies. Classification involves detecting
positive/negative reviews [Pang and Lee, 2005]. For this
dataset, we randomly split 80% as the training set and the
remaining 20% as test set. In this process, we keep a balance
number of items with each label in the training set.

There are several hyper parameters in our model. We set
them empirically. The details are in Table 2. We use the tool
word2vec 4 to train word and concept embedding. If a word
is unknown, we will randomly initialize its embedding.

4.2 Baseline Methods
We compared our method with several state-of-the-art ap-
proaches: two feature-based methods and two deep learning
based methods. The metric for evaluating each model is the
accuracy of prediction.

Word-Concept Embedding + LR. This baseline uses the
weighted word embedding as well as concept embedding to
represent each short text. For the weighted word embedding
Vw ∈ Rm, we use the tf-idf value of each word as the weight.
Given the concept vector C, the concept embedding Vc ∈ Rm
is the weighted average of embedding of each concept:

Vc =

k∑
i=0

wivci
k∑
i=0

wi

(7)

And the overall embedding is the average of Vw and Vc.
Then we use Logistic Regression over such embedding to
perform classification. A similar idea has been proposed

3https://www.cs.york.ac.uk/semeval-2013/task2/
4https://code.google.com/archive/p/word2vec/

in [Huang et al., 2012] to capture global context for classi-
fication.
BoW + SVM. This baseline is proposed by [Wang and Man-
ning, 2012]. The basic idea is to use the traditional SVM
algorithm to build a classifier. We use the unigrams as the
feature for short texts. The weight of each feature is the fre-
quency of each unigram.
CNN. This method uses a one-layer CNN for text classifica-
tion proposed by [Kim, 2014]. It uses a multi-channel archi-
tecture for text embedding. We obtain its source code from
the author 5 and use its default settings for hyper parameters.
CharCNN. We also compared our work with a recently pro-
posed method [Zhang et al., 2015]. It uses a 12-layer convo-
lutional neural network with only character level features as
the input. We obtain the source code from the author 6.
WCCNN. This baseline is proposed by us. We use only
the upper subnetwork of our proposed model. And the em-
bedding is the concatenation of word embedding and concept
embedding matrices.

4.3 Discussion of Results
The results on all the datasets are shown in Table 3. We can
see that our model KPCNN significantly outperforms state-
of-the-art methods. In all the five datasets, our proposed
model outperforms the best baselines by 2% to 5% in accu-
racy. Even without the character level information, the WC-
CNN model still outperforms most state-of-the-art methods.
The reason is that the neural network can effectively repre-
sent the semantic content of a short text. With the help of the
concept embedding, we can acquire richer features from the
short text and feed them into our model.

By comparing our model with the proposed baseline WC-
CNN, we can see that the character level information can help
improve the performance of the model. With the help of the
character features, we have improvement in accuracy on four
out of five datasets.

While character-level features are helpful, it is worth not-
ing that the CharCNN model [Zhang et al., 2015] does not
perform well in our experiment. The reason is that due to
the shortness and sparsity of short texts, CharCNN is un-
able to capture enough features with only character level in-
formation. Therefore, although CharCNN works well for
document-level datasets, it is not effective in solving the prob-
lem of short text classification. Moreover, as CharCNN has a
fixed alphabet, it fails to take many unknown characters in the

5https://github.com/yoonkim/CNN sentence
6https://github.com/zhangxiangxiao/Crepe



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2920

0

20

40

60

80

100

TREC Twitter AG news Bing Movie Review

Ac
cu

ra
cy

(p
er

ce
nt

ag
e)

Dataset

CNN
WC
KP

(a) Glove embedding

0

20

40

60

80

100

TREC Twitter AG news Bing Movie Review

Ac
cu

ra
cy

(p
er

ce
nt

ag
e)

Dataset

CNN
WC
KP

(b) Word-Concept embedding

Figure 2: Results with different embeddings

Table 4: The number of unknown words in each embedding
Embedding TREC Twitter AG news Bing Movie Review
vocabulary size 9592 26840 51299 15011 18762
Word2vec 467 5133 5096 1350 2314
Word-Concept 3891 17029 35185 9709 2302
Glove 3715 16111 34729 9660 1153

Twitter dataset. So the performance on that dataset is rather
poor.

From the above results, we can also observe that compared
with traditional methods, convolutional neural network ap-
proaches achieve better results. The main reason is that CNN
is able to capture richer features with various filter sizes in
the convolution layer and select more discriminative features
from pooling layers.

Our model can be integrated with other word embedding,
too. Here we perform some experiments using two different
word embeddings: Word-Concept [Cheng et al., 2015] and
Glove [Pennington et al., 2014]. In order to show the contri-
bution of different features, we test with three methods. CNN
is the method that uses only the embedding of words in short
text. WC is the WCCNN model with only upper subnetwork.
And KP is our KPCNN model. The results are shown in Fig-
ure 2.

We can see that the overall results using Glove and Word-
Concept embedding are not as good as using word2vec em-
bedding. The main reason is that compared with word2vec,
these two embedding methods have too many unknown
words. The number of unknown words in each dataset is
shown in Table 4. We can see that for all the datasets, there
are fewer unknown words in word2vec. In the TREC dataset,
the Word-Concept embedding fails to recognize more than
one third of the words. In this case, the embedding vectors
of most words are initialized randomly and the quality of the
short text representation will be seriously influenced.

From the results in Figure 2, we can further conclude that
the conceptualization and character level information does
help improve the overall performance. For the Word-Concept
embedding, the accuracy of KP can be up to 12% higher than

that of CNN. This is because Word-Concept makes use of
additional knowledge source to learn contextual word repre-
sentation. And the implicit representation of words involves
a combination of its intrinsic vector and the most context-
appropriate concept vector. Therefore, the KP model can
make full use of the joint representation of short text and
achieve better accuracy than the CNN model.

Finally, we can see from Figure 2 that KPCNN can have
up to 7% accuracy gaining than the other two models. This
is because word-level embedding can not handle out-of-
vocabulary words. This phenomenon is more significant as
the number of unknown words in Glove and Word-Concept is
much larger. With the help of character level information, we
can easily address this problem.

5 Conclusion
In this paper, we propose a novel model that takes advan-
tage of both explicit and implicit representations for short text
classification. We enrich the features of short texts by concep-
tualizing them with the help of a well known knowledge base.
We combine the associated concepts with the words to gen-
erate the embedding of short text. We also utilize the charac-
ter level information to enhance the embedding of short text.
With such embedding as the input, we build a joint model
on the basis of the CNN to perform classification. Experi-
ments on real data show that our method achieves significant
improvement over state-of-the-art methods for short text clas-
sification.

References
[Bengio et al., 2003] Yoshua Bengio, Réjean Ducharme,

Pascal Vincent, and Christian Janvin. A neural proba-



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2921

bilistic language model. Journal of Machine Learning Re-
search, 3:1137–1155, 2003.

[Cheng et al., 2015] Jianpeng Cheng, Zhongyuan Wang, Ji-
Rong Wen, Jun Yan, and Zheng Chen. Contextual text
understanding in distributional semantic space. In CIKM,
pages 133–142, 2015.

[Collobert et al., 2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel P. Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12:2493–
2537, 2011.

[Conneau et al., 2016] Alexis Conneau, Holger Schwenk,
Loı̈c Barrault, and Yann LeCun. Very deep convolu-
tional networks for natural language processing. CoRR,
abs/1606.01781, 2016.

[Duchi et al., 2011] John C. Duchi, Elad Hazan, and Yoram
Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159, 2011.

[Hill et al., 2016] Felix Hill, KyungHyun Cho, Anna Korho-
nen, and Yoshua Bengio. Learning to understand phrases
by embedding the dictionary. TACL, 4:17–30, 2016.

[Hinton et al., 2012] Geoffrey E. Hinton, Nitish Srivastava,
Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Improving neural networks by preventing co-
adaptation of feature detectors. CoRR, abs/1207.0580,
2012.

[Hu et al., 2016] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu,
Eduard H. Hovy, and Eric P. Xing. Harnessing deep neural
networks with logic rules. In ACL, 2016.

[Hua et al., 2015] Wen Hua, Zhongyuan Wang, Haixun
Wang, Kai Zheng, and Xiaofang Zhou. Short text un-
derstanding through lexical-semantic analysis. In ICDE,
pages 495–506, 2015.

[Huang et al., 2012] Eric H. Huang, Richard Socher,
Christopher D. Manning, and Andrew Y. Ng. Improving
word representations via global context and multiple word
prototypes. In ACL, pages 873–882, 2012.

[Kalchbrenner et al., 2014] Nal Kalchbrenner, Edward
Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. In ACL, pages 655–665,
2014.

[Kenter and de Rijke, 2015] Tom Kenter and Maarten de Ri-
jke. Short text similarity with word embeddings. In CIKM,
pages 1411–1420, 2015.

[Kim et al., 2016] Yoon Kim, Yacine Jernite, David Sontag,
and Alexander M. Rush. Character-aware neural language
models. In AAAI, pages 2741–2749, 2016.

[Kim, 2014] Yoon Kim. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–1751,
2014.

[Le and Mikolov, 2014] Quoc V. Le and Tomas Mikolov.
Distributed representations of sentences and documents.
In ICML, pages 1188–1196, 2014.

[Li et al., 2013] Pei-Pei Li, Haixun Wang, Kenny Q. Zhu,
Zhongyuan Wang, and Xindong Wu. Computing term
similarity by large probabilistic isa knowledge. In CIKM,
pages 1401–1410, 2013.

[Palangi et al., 2016] Hamid Palangi, Li Deng, Yelong Shen,
Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying Song,
and Rabab K. Ward. Deep sentence embedding using long
short-term memory networks: Analysis and application to
information retrieval. IEEE/ACM Trans. Audio, Speech &
Language Processing, 24(4):694–707, 2016.

[Pang and Lee, 2005] Bo Pang and Lillian Lee. Seeing stars:
Exploiting class relationships for sentiment categorization
with respect to rating scales. In ACL, 2005.

[Pennington et al., 2014] Jeffrey Pennington, Richard
Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In EMNLP, pages
1532–1543, 2014.

[Post and Bergsma, 2013] Matt Post and Shane Bergsma.
Explicit and implicit syntactic features for text classifica-
tion. In ACL, pages 866–872, 2013.

[Shen et al., 2006] Dou Shen, Rong Pan, Jian-Tao Sun, Jef-
frey Junfeng Pan, Kangheng Wu, Jie Yin, and Qiang Yang.
Query enrichment for web-query classification. ACM
Trans. Inf. Syst., 24(3):320–352, 2006.

[Socher et al., 2011] Richard Socher, Eric H. Huang, Jeffrey
Pennington, Andrew Y. Ng, and Christopher D. Manning.
Dynamic pooling and unfolding recursive autoencoders
for paraphrase detection. In NIPS, pages 801–809, 2011.

[Socher et al., 2013] Richard Socher, Alex Perelygin, Jean Y
Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for
semantic compositionality over a sentiment treebank. In
EMNLP, pages 1631–1642. Citeseer, 2013.

[Song et al., 2011] Yangqiu Song, Haixun Wang,
Zhongyuan Wang, Hongsong Li, and Weizhu Chen.
Short text conceptualization using a probabilistic knowl-
edgebase. In IJCAI, pages 2330–2336, 2011.

[Wang and Manning, 2012] Sida I. Wang and Christopher D.
Manning. Baselines and bigrams: Simple, good sentiment
and topic classification. In ACL, pages 90–94, 2012.

[Wang and Wang, 2016] Zhongyuan Wang and Haixun
Wang. Understanding short texts(tutorial). In ACL, 2016.

[Wang et al., 2014] Fang Wang, Zhongyuan Wang, Zhoujun
Li, and Ji-Rong Wen. Concept-based short text classifica-
tion and ranking. In CIKM, pages 1069–1078, 2014.

[Wang et al., 2015] Zhongyuan Wang, Kejun Zhao, Haixun
Wang, Xiaofeng Meng, and Ji-Rong Wen. Query under-
standing through knowledge-based conceptualization. In
IJCAI, pages 3264–3270, 2015.

[Wu et al., 2012] Wentao Wu, Hongsong Li, Haixun Wang,
and Kenny Qili Zhu. Probase: a probabilistic taxonomy for
text understanding. In SIGMOD, pages 481–492, 2012.

[Zhang et al., 2015] Xiang Zhang, Junbo Zhao, and Yann
LeCun. Character-level convolutional networks for text
classification. In NIPS, pages 649–657, 2015.


