

P Tsinghua University Two Birds on One Stone: An Efficient Hierarchical Framework for Top-k and Threshold-based String Similarity Search

Jin Wang, Guoliang Li, Dong Deng, Yong Zhang, Jianhua Feng

Problem Definition

Edit Distance:

The minimum number of edit operations(insertion/deletion/substitution) needed to transform one string to another string. For example: ED(*brother*, breather) = 2

ORACLE

Threshold-based Similarity Search Algorithm

Search:

1. Locate the right level 2. Generate substrings of query 3. Probe the inverted list, count the number of matched segments 4. Generate candidates 5. Perform verification

Improving Filter and Verification Step

Reduce number of substrings:

brother

breother

substitute o with a

breather

- Threshold-based String Similarity Search: Given a string set S a query string q and threshold τ , threshold-based string similarity search finds all strings $s \in S$ that $ED(s, q) \leq \tau$.
- <u>Top-k String Similarity Search</u>: Given a string set S and a query string q, top-k string similarity search returns a string set $R \subseteq S$ such that |R|=k and for any string $r \in R$ and $s \in S - R$, ED(r, C)

$q) \leq ED(s, q).$ string Length q = "brothor" brother brothel τ=1 broathe breathes k=2 swingable deduction

Application: **D** Data cleaning & Data integration **D** Spell Checking Copy Detection

- **D** Entity Linking
- Macromolecules Sequence Alignment

Eucene

....

Remove invalid matching:

Improve Verification: **Multi-Extension method**

Top-k Similarity Search Algorithm

Batched Pruning

Avoid duplicate search

Iteratively String Partition:

Two disjoint segments, prefix and suffix

Until we reach a level that has segments of length 1

The HS-Tree Index

Generate tree nodes and inverted lists

HS-Tree index

An example of group 7 in HS-Tree index

Greedy Matching

Eliminate consecutive errors within a segment

Experiments

Datasets

Author

DBLP

Query Log

Settings:

C++, g++ 4.8.2 with -O3 flags 64bit Ubuntu Server 12.04 LTS version Intel Xeon E5-2650 2.00GHz processor and 32GB memory.

TABLE II.

612,781

464,189

1,385,925 105

DATASETS

Avg Len

15

45

Max Len

46

522

1626

Min Len

6

30

Copyright © 2015, Database Research Group, Tsinghua University