
MF-Join: Efficient Fuzzy String Similarity Join
with Multi-level Filtering

Jin Wang], Chunbin Lin†, Carlo Zaniolo]
] Computer Science Department, University of California, Los Angeles.

† Amazon AWS.
{jinwang,zaniolo}@cs.ucla.edu; lichunbi@amazon.com

Abstract—As an essential operation in data integration and
data cleaning, similarity join has attracted considerable attention
from the database community. In many application scenarios, it is
essential to support fuzzy matching, which allows approximate
matching between elements that improves the effectiveness of
string similarity join. To describe the fuzzy matching between
strings, we consider two levels of similarity, i.e., element-level
and record-level similarity. Then the problem of calculating fuzzy
matching similarity can be transformed into finding the weighted
maximal matching in a bipartite graph.

In this paper, we propose MF-Join, a multi-level filtering
approach for fuzzy string similarity join. MF-Join provides a
flexible framework that can support multiple similarity functions
at both levels. To improve performance, we devise and implement
several techniques to enhance the filter power. Specifically,
we utilize a partition-based signature at the element-level and
propose a frequency-aware partition strategy to improve the
quality of signatures. We also devise a count filter at the record-
level to further prune dissimilar pairs. Moreover, we deduce an
effective upper bound for the record-level similarity to reduce
the computational overhead of verification. Experimental results
on two popular datasets shows that our proposed method clearly
outperforms state-of-the-art methods.

I. INTRODUCTION

Similarity join is an essential operation in many applica-
tions, such as data cleaning and integration [4], personal-
ized recommendation [5] and near duplicate object elimina-
tion [33]. Given two collections of strings, string similarity join
aims at finding all similar string pairs from the two collections.
To identify similarity strings, most existing studies utilize
either character-based similarity functions, e.g., edit distance,
or token-based similarity functions, e.g., Jaccard and Cosine,
to quantify similarity of two strings.

Furthermore, to allow fuzzy matching between strings,
previous study [26] proposed the fuzzy similarity functions,
such as Fuzzy-Jaccard and to make a combination of above
two categories of similarities. Though these fuzzy similarity
functions are effective, there is a limitation in their application
scope as they only support character-based functions, i.e. edit
similarity, to evaluate the similarity between elements in two
strings. However, many real world applications also require
supporting token-based similarity metrics between elements
in string fuzzy matching. Taking the application of data
integration between web tables [21] as an example, we can
model each row as a string and use string similarity to identify
whether two rows are similar. Given two tables shown in
Table I, we want to know whether record R3= “Michael

Franklin, University of Chicago, 5730 S Ellis Avenue”
in table R is similar to record S2=“Michael J. Franklin,
5730 S Ellis Ave” in S. To evaluate the similarity between
them, applying either character-based or token-based similarity
functions would fail to identify similar rows due to low
similarity values. It is also not proper to directly use Fuzzy-
Jaccard proposed in [26] since the structural information that
each element belongs to a particular table cell will be lost. In
this case, it is better to use token-based similarity functions to
measure the similarity between elements.

TABLE I
EXAMPLE RECORD SETS R AND S

Name Affiliation Address
Michael Stonebraker MIT 32 Vassar Street MA

Michael F. Carey UC Irvine
Michael Franklin University of Chicago 5730 S Ellis Avenue

(a) Record set R
FullName Address Organization

Michael J. Carey Irvine CA UCI
Michael J. Franklin 5730 S Ellis Ave
Michael Stonebraker 32 Vassar St MA MIT CSAIL

(b) Record set S

To overcome such limitations, in this paper we generalize
the problem of string fuzzy matching into a two-level similar-
ity scheme. Although the fuzzy string matching problem has
been studied in previous work [26], we aim at generalizing it in
a unified framework, which supports a wider range of similar-
ity functions. Given a string, we model it as a record which
consists of multiple elements. In this way, we enable fuzzy
string matching by allowing similar elements to be matched
with each other. Here the element-level similarity can be mea-
sured with both character-based and token-based functions.
Then the record-level similarity serves as the metric to decide
the Fuzzy Similarity between two string records. Following
previous work [16], [26] related to schema matching and data
integration, the problem of measuring Fuzzy Similarity can
be modeled as finding the maximum weighted matching of a
bipartite graph. Although the recent Silkmoth framework [6] is
designed for the problem of relatedness discovery and can also
be adopted to support fuzzy string similarity join, it shares with
Fast-Join a common performance limitation, i.e., they both
adopt q-gram based signatures to filter out dissimilar records.
As there are significant overlaps between q-grams, they will
produce a large number of candidates and thus reduce the

filtering power. For fuzzy string similarity join, the verification
is much more expensive than that of character and token-based
similarity functions. The time complexity of computing Fuzzy
Similarity is O(n3) where n is the average size of elements
in string records. Therefore, it is essential to improve the filter
power so as to avoid serious performance issues.

To address this problem, we propose a Multi-level Filtering
framework MF-Join to efficiently support fuzzy string simi-
larity join. More precisely, we devise a hierarchical filtering
strategy to generate candidates from two levels, i.e., element-
level and record-level. To identify similar elements, we adopt
a partition based approach which generates signatures by
splitting each element into disjoint segments. Two elements
are similar only if they have a common segment. In this way,
we can reduce the cardinality of signatures and strengthen the
filter power. To improve the quality of segment signatures,
we propose a frequency-aware partition strategy to trim down
false positives. In addition, we propose a record-level filter
which can prune record pairs that do not share enough similar
elements. We also employ an effective upper bound of record-
level similarity to enable early termination during verification.
Experimental results on widely used datasets demonstrate the
superior performance of our proposed techniques.

To sum up, this paper makes the following contributions:
• We propose an efficient framework MF-Join for fuzzy

string similarity join, which is flexible to support multiple
similarity functions.

• We devise and implement a multi-level filtering frame-
work to enhance the filter power from multiple aspects:
(i) a partition based signature in the element-level; (ii)
a count based filter in the record-level; (iii) an effective
upper bound computation during the process of verifica-
tion.

• We conduct experiments on two public datasets to evalu-
ate the efficiency of our proposed techniques. The results
show that our method obviously outperforms state-of-
the-art methods. Since the performance advantage comes
from the combination of many optimizations, we also
conduct a comprehensive series of experiments to isolate
the marginal effect of each individual optimization.

The rest of this paper is organized as following. We for-
malize the problem and review related work in Section II.
We introduce the framework of MF-Join and the signature
mechanism in Section III. We propose the element-level filter
technique and optimize the signature generation process in
Section IV. We devise the record-level filter and improve the
verification step in Section V. Necessary discussions are made
in Section VI. Experimental results are reported in Section VII.
Finally, Section VIII concludes this paper.

II. PRELIMINARIES

We formally define the problem in Section II-A, and survey
the related work in Section II-B.

A. Problem Definition
We first introduce some necessary notations to formally

describe the fuzzy string similarity join problem. In a string

Fig. 1. Example Dataset.

Fig. 2. Bipartite graphs with different δ.

database R, each string R ∈ R is called a record. The ith

record in R is denoted as Ri. The record-level similarity
between two records R and S is denoted as SIM(R,S).
Each record consists of several elements. We denote the ith

element of record R as ri, whereas jth element of Ri is
denoted as ri,j . And the set of all elements in the dataset
is denoted as E . For two elements ri and sj , their element-
level similarity is denoted as sim(ri, sj). In this paper, we
use Jaccard as the similarity metric for both record-level and
element-level. Notice that our framework can support different
kinds of similarity metrics at both levels, as will be discussed
in Section VI. At the lowest level, each element consists of
several tokens, which is the basic unit of a string record. We
construct a global dictionary T of all tokens in a dataset. The
ith token in T is denoted as ti. The length of record Ri and
element ri,j is denoted as |Ri| and |ri,j |, respectively.

Consider the example record setR in Figure 1(a). Regarding
the record length, we have |R1| = 4 and |R4| = 2. Similarly,
we have |r1,3| = 4. In addition, as there are 10 distinct tokens
inR, thus the cardinality of global dictionary T is 10 as shown
in Figure 1 (b).

Following the previous studies [26], [6], we adopt Fuzzy
Overlap to enable fuzzy string similarity join. Given two
records R, S and an element-level similarity threshold δ, we
can construct a bipartite graph G = {X,Y,E} where the nodes
in X and Y are elements in R and S, respectively. For any
two elements ri and sj , if sim(ri, sj) ≥ δ, there is an edge
between the corresponding nodes < Xi, Yj >∈ E. The details
are shown in Definition 1.

Definition 1 (Fuzzy Overlap): Given two records R, S
and an element-level threshold δ, let G be the corresponding
bipartite graph, then the Fuzzy Overlap between R and
S, denoted as R∩̃δS, is the maximum weighted bipartite
matching value over G .

Example 1: Consider records R1, R3 ∈ R in Figure 1 (a).
When δ = 0.7, there are only two edges in the bipartite graph,
i.e., (r1,3, r3,1) and (r1,4, r3,3) since sim(r1,3, r3,1) = 0.75 >
0.70 and sim(r1,4, r3,3) = 0.75 > 0.70. The corresponding
bipartite graph is shown in Figure 2(a). When decreasing the
value of δ, more edges may appear in the bipartite graph.
For example, when δ = 0.60, the edge (r1,2, r2,1) becomes
available (see Figure 2(b)) as sim(r1,2, r2,1) = 0.67 > 0.60.
Similarly, as shown in Figure 2(c), when δ = 0.50, another
edge is added into the graph.

The highlighted edges (in red color) in Figure 2 forms the
maximum bipartite matching, which can be adopted to com-
pute Fuzzy Similarity. For example, we have |R1∩̃0.50R3| =
0.67 + 0.50 + 0.75 = 1.92 in Figure 2(c). Notice that, in this
case, the edge (r1,3, r3,1) is not selected since nodes r1,3 and
node r3,1 have been covered by selected edges (r1,2, r3,1) and
(r1,3, r3,2) respectively. �

With the definition of Fuzzy Overlap, we denote the
record-level similarity function with constraint of element-
level threshold δ as SIMδ . Then SIMδ is named as Fuzzy
Similarity, which serves as the metric to evaluate the similarity
between string records. If we use Jaccard as the record-level
similarity function, the Fuzzy Similarity between records R
and S can be calculated as following:

SIMδ(R,S) =
|R∩̃δS|

|R|+ |S| − |R∩̃δS|
(1)

For example, in Figure 2 again, we have:
SIM0.70(R1, R3) = 1.5

4+3−1.5 = 0.27, SIM0.60(R1, R3) =
1.5

4+3−1.5 = 0.27, and SIM0.50(R1, R3) = 1.92
4+3−1.92 = 0.38.

Next we formally define our problem in Definition 2.
Definition 2 (Fuzzy String Similarity Join): Given two

record set R and S, the element-level similarity threshold δ
and the threshold of Fuzzy Similarity τ , fuzzy string similarity
join aims at finding all pairs of records R ∈ R and S ∈ S,
where SIMδ(R,S) ≥ τ .

In this paper, we focused on the self-join problem where
R = S, but it is very easy to extend our framework to the
R-S Join problem.

B. Related Work

String similarity join has been a popular topic in the
database community. Two extensive experimental studies are
presented in [10] and [15]. Most existing studies adopted a
filter-and-verification framework. It has also been adopted in
other problems like similarity search [35], [36] and approxi-
mate entity extraction [28]. A majority of them utilized q-gram
as the signature and are based on prefix filter [4], [1], [2] and
count filter [8] technique. To improve the power of prefix filter,
the position filter [33] and mis-match filter [31] techniques are
proposed. Wang et al. [27] proposed an adaptive framework
to dynamically select the length of prefix with the help of a
cost model. Some studies proposed other kinds of signatures
to improve filter power. Qin et al. [17] adopted an asymmetric
signature mechanism to further improve the performance. Li

et al. [12] and Wang et al. [29] aimed at reducing the filter
cost in the process of probing inverted lists.

Another category of studies utilized disjoint segments as
signature and relied on the pigeon hole theory to decide the
filtering condition. They have been adopted in string similarity
join problem for both character-based [13] and set-based
similarity metrics [7]. Arasu et al. [1] proposed the PartEnum
method which adopted disjoint chunks as signature to support
set similarity join over multiple metrics. Qin et al. [19] gen-
eralized the pigeon hole theory to support multiple similarity
search problems. Wang et al. [25] adopted similar idea for the
similarity search problem. All above studies focused on either
token-based or character-based similarity functions and cannot
be directly adopted to fuzzy string similarity join.

There are also studies aiming at supporting fuzzy string
similarity join. Wang et al. [26] proposed new similarity func-
tion by combining token-based and character-based functions
and devised Fast-Join algorithm to improve the performance.
However, it only supports edit similarity as the similarity
metric in element-level. Deng et al. [6] proposed Silkmoth
to support relatedness similarity queries, which can also work
for the problem of fuzzy string similarity join. Compared
with Fast-Join, it can support different kinds of element-level
similarity functions like MF-Join did. Our work falls into this
category.

Some other studies aimed at addressing string similarity
join problem with different similarity metrics and application
scenarios. Lu et al. [14] focused on the problem of string
similarity join with synonyms. Yang et al. [34] worked on
another similarity metric, i.e. set containment. Xiao et al. [32]
solved the top-k set similarity join problem. Qin et al. [18] pro-
posed a novel framework for similarity search with Hamming
distance as the similarity metrics, which also provided very
good insight for other similarity metrics. Vernica et al. [24] and
Rong et al. [20] proposed effective distributed algorithms for
string similarity join under MapReduce framework. Another
line of work is to address the string similarity join problem
approximately. The Locality Sensitive Hashing (LSH) tech-
nique has been adopted for this problem to speed up the query
processing with theoretical guarantee for the error bound [22].
Some studies [3], [23], [37] utilized the similarity idea for
nearest neighbor search problems.

III. OVERALL FRAMEWORK

In this section, we introduce the overall framework of MF-
Join (Section III-A) and the basic filtering mechanism in the
element-level (Section III-B).

A. Architecture Overview

We propose a filter-and-verification framework for the prob-
lem of fuzzy string similarity join. To filter dissimilar record
pairs, we generate a signature for each record in the dataset.
Given the element-level threshold δ, we denote the signature
of record R ∈ R and an element ri ∈ R as Ψδ(R) and
Ψδ(ri), respectively. Here we have Ψδ(R) =]|R|i=1Ψδ(ri).
To guarantee the correctness of filtering mechanism, given

Fig. 3. Overall framework of MF-Join.

two records R,S ∈ R and record-level threshold τ , if
SIMδ(R,S) < τ , it should satisfy Ψδ(R) ∩ Ψδ(S) = ∅.
Correspondingly, given two elements ri ∈ R, sj ∈ S and the
element-level threshold δ, if sim(ri, sj) < δ, it should satisfy
Ψδ(ri)∩Ψδ(sj) = ∅. Such a signature mechanism allows MF-
Join to perform filtering and prune dissimilar record pairs.

For the problem of fuzzy string similarity join, there are
two thresholds: the element-level one and the record-level one.
Therefore, we propose a two-layer filtering mechanism to fully
utilize both thresholds and improve the filter power. For the
element-level filter, we generate signatures for each element
w.r.t. δ and add them into the inverted index. If two elements
has overlapping over their signatures, they become candidate
element pair. Then their corresponding records could be a
potential candidate record pair. For the record-level filter, we
deduce a stricter filtering condition with the help of τ . Then
we can remove more false positives even when they have
candidate element pairs.

To sum up, MF-Join consists of three stages: preprocessing,
filter and verification as is shown in Figure 3.

• Preprocessing stage. The Signature Generator per-
forms preprocessing to create signatures for all the
records. (Section IV)

• Filter stage. The Candidate Generator filters out dis-
similar records using both element-level (Section IV) and
record-level (Section V-A) filters to generate candidate
pairs. The inverted index over the whole dataset will also
be constructed during this stage.

• Verification stage. The Verifier calculates Fuzzy Simi-
larity for all candidate record pairs and returns the final
results. We also propose an upper bounding technique to
enable optimization in finer granularity (Section V-B).

B. Partition based Signature

We first look at how to perform filtering with the element-
level similarity threshold δ. To reach this goal, we employ a
partition based signature to generate the signatures for each
element of a record. The basic idea is that we split all elements
of a record into several disjoint segments. If two records do
not have a common segment, they cannot be similar.

First we introduce how to decide number of segments d.
Given two elements ri, sj and the element-level level threshold
δ, if JAC(ri, sj) ≥ δ, then we have |ri∩sj | ≥ δ

1+δ (|ri|+|sj |).
Consider the set symmetric difference, i.e. all the different
tokens, between ri and sj , the cardinality is |ri−sj |+|sj−ri|.
According to the length filter, we also have |sj | ∈ [δ|ri|, |ri|δ].
So we have:

|ri − sj |+ |sj − ri| ≤ |ri|+ |sj | −
2δ

1 + δ
(|ri|+ |sj |)

=
1− δ
1 + δ

(|ri|+ |sj |)

≤ 1− δ
δ
|ri| (2)

Therefore, given threshold δ and element ri, we need to
split it into F(|ri|, δ) = d 1−δδ |ri|e+1 disjoint segments. Then
if two elements do not share a common segment, according to
the pigeon hole principle, the value of |ri ∩ sj | cannot reach
δ

1+δ (|ri|+ |sj |). Therefore, we can safely assert that the two
elements are dissimilar.

To generate the signatures of an element in a record, we first
need to guarantee the correctness of segmentation. That is, for
a given segment number d, the same token from any element
should be allocated to the same segment. Otherwise, there
will be false negative in the results. We denote the partition
strategy for d segments as Pd. Given an element ri and a
token t ∈ ri, the segment id token t belongs to w.r.t. Pd is
denoted as Pd(ri, t). And the formal definition of correctness
is summarized in Definition 3.

Definition 3 (Correctness of Partition): Given the number
of segments d, a partition strategy Pd is correct iff for any two
element ri, rj ∈ E that have a common token t, Pd(ri, t) =
Pd(rj , t) always holds.

A straightforward way of satisfying Definition 3 is to use
hash functions: given a token t and the number of segments
d, we allocate t to the hash(t) mod d segment. Another
example of correct partition strategy is even partition. To
enable this mechanism, we first need to get the global token
dictionary T . Then given a segment number d, we evenly split
all tokens in T into d disjoint sub-dictionaries according to
their subscriptions. Here the ith sub-dictionary is denoted as
Ti. In the even partition, following the idea of [13], the first
b|T |/(d |T |d e)c sub-dictionaries will hold b |T |d c tokens while
the remaining ones will hold d |T |d e tokens. Then given an
element ri ∈ E , we will enumerate all its tokens. If a token
t ∈ ri belongs to the Tk, it should be put into the segment with
id k 1. More sophisticated partition schemes will be introduced
later, in Section IV.

Example 2: Consider the global token dictionary in Fig-
ure 2(b). Assume the segment number d = 3, then the first 2
sub-dictionaries hold 3 tokens, while the last sub-dictionary
contains 4 tokens. That is T1 = {t1, t2, t3}, T2 = {t4, t5, t6},
and T3 = {t7, t8, t9, t10}. Consider the element r3,1 =
{t4, t2, t9} in Figure 2(a), token t2 is all assigned to the
segment with id 1, while tokens t4 and t9 are assigned to
segments 2 and 3, respectively. �

Finally we can generate the signatures for all the records
using the above partition strategies. Given an element ri ∈ R
and the segment number d, we denote its set of segments
as X (ri, d). And the signature of R can be obtained as the
union of segments from all its elements, where Ψδ(R) =

1Here empty segment is allowed and it can be handled by our join
algorithm.

Fig. 4. Hierarchical tree structure.

∪ri∈RX (ri, di), where di = F(|ri|, δ). The Element-level
filter can be formally concluded as Lemma 1.

Lemma 1 (Element-level Segment Filter): Given two records
R,S ∈ R and the element-level similarity threshold δ, for
elements ri ∈ R and sj ∈ S, if Ψδ(ri) ∩ Ψδ(sj) = ∅, then
sim(ri, sj) < δ. If Ψδ(R) ∩ Ψδ(S) = ∅, R and S cannot be
similar.

IV. EFFECTIVE FUZZY JOIN ALGORITHM

In this section, we propose the MF-Join framework using
the element-level filter introduced in Section III. We first
introduce the join algorithm based on partition based signature
(Section IV-A) and then devise a frequency-aware partition
strategy to improve it (Section IV-B).

A. The Join Algorithm with Element-level Filter

In the previous section, we introduce the basic mechanism
of partition based signature. Now we propose a join algorithm
based on it. In order to help accelerate the join process, we first
group records and elements by lengths. Then for each record-
element length combination, we construct inverted index for
all the segments inside it. Technically, we build a hierarchical
tree structure, which contains three components: (i) record
length layer, (ii) element length layer, and (iii) inverted list
layer. Figure 4 visualizes the hierarchical tree structure. More
precisely,
• Each node in the record length layer represents a length

of records. The node m points to all the records with
length m are grouped in its subtree.

• Each node in the element layer corresponds to a length
of elements. The node n points to all the elements whose
lengths are n and are inside the records with length m.

• Each inverted list is a key-value pair where the key
is a segment and the value is a list of record-id (rid)
and element-id (eid) pairs. The inverted lists Lm,n are
constructed by the elements with length n contained in
the records with length m. The inverted lists belong to
the segment with id k in Lm,n are denoted as Lkm,n. The
segments in the group Lkm,n is denoted as Xm,nk

In the filtering stage, we use the first two layers in the
hierarchical tree structure to perform length filter, and use the
inverted list layer to perform element-level filter.

Algorithm 1: MF-Join Framework(R, δ, τ)
Input: R: The set of records; δ: The element-level

similarity threshold; τ : The record-level similarity
threshold

Output: A: The set of similarity record pairs
begin1

Initialize result set A, candidate set C as ∅;2

Group all records by length, traverse R based on the3

lengths in a decreasing order;
Sort all tokens in R according to a global order and4

construct the global dictionary T ;
foreach record R ∈ R do5

for m ∈ [τ |R|, |R|] do6

foreach element ri ∈ R do7

for n ∈ [δ|ri|, |ri|δ] do8

Split ri into di = F(n, δ) disjoint9

segments X (ri, di);
for k = 1 to di do10

Find candidates for segment Xm,nk11

by traversing Lkm,n;

Add candidate record pairs into C;12

Repartition all ri ∈ R into F(|ri|, δ) disjoint13

segments, add them into L|R|,|ri|;
for All record pairs 〈R,S〉 ∈ C do14

if Verify(R,S, τ) is True then15

Add 〈R,S〉 into A;16

return A;17

end18

Algorithm 1 demonstrates the similarity join process. We
first conduct necessary preparations, i.e. initializing the result
set and candidate set, grouping all the records by length and
creating the global dictionary of all tokens in the dataset
(line: 2 to 4). Then for each record R, we enumerate its
elements to generate the candidates. For each element ri ∈ R,
we inspect the inverted lists Lm,n satisfying both the record-
level and element-level length filter. Specifically, for the ele-
ments with length n, we split ri into F(n, δ) disjoint segments
(line: 9). Then we lookup the inverted indexes for these
segments to collect candidates (line: 11). Next we repartition
ri into F(|ri|, δ) disjoint segments and add the pairs of rid and
eid into the corresponding inverted lists (line: 12). Finally we
verify the record-level similarity and add those similar pairs
into the result (line: 14).
Complexity The time complexity of Algorithm 1 is analyzed
as following. First we need to sort and group the records in
R by record length, in O(z log z) time (z = |R|). Then for
each record, we need to perform the element level filtering for
all its elements to find the candidates. Suppose the average
length of all records is l̄r, the average length of all elements
is l̄e and the average size of all inverted lists is l̄, the filter
cost is O(zl̄r l̄e l̄) in total. If the total number of candidate
pairs is c, the verification cost is O(cl̄r l̄e

2
). And the total

Fig. 5. Example of MF-Join framework.

time complexity can be obtained by adding up them together.
Example 3: Consider the records in Figure 1, assume δ =

0.7. We first access R1 (|R1| = 4). Inside R1, each of the
first two elements r1,1, r1,2 have two tokens, while the last
two elements have four tokens. Initially the index is empty.
We split r1,1 into d 1−0.70.7 2|e + 1 = 2 segments. Here we use
an even partition, thus 〈1, 1〉 is inserted into the inverted list
with segment {t1} as its key in the first bucket as well as
the inverted list with segment {t8} as its key in the second
bucket. This is because t1 belongs to the first partition while t8
belongs to the second partition. Figure 5(a) shows the complete
index after processing R1. When accessing element r2,1, we
need to consider the inverted lists Lm,n where m ∈ [2, 4]
and n ∈ [1, 3]. For example, it needs to access L4,2 but not
L4,4. As {t1, t2} is assigned to the first segment, we get a
candidate record pair (R1, R2) from L4,2. In addition, after
accessing R2, the index is updated as shown in Figure 5(b).
Notice that r2,2 has three tokens, so there is a new node with
value 3 in the second level in Figure 5(b). Then we access R3,
as it only cares m ∈ [2, 3], the whole index in Figure 5(c) can
be skipped. Similarly, R4 is also pruned. So the final candidate
is 〈R1, R2〉. �

B. Frequency-aware Incremental Partition

Previously we have introduced a simple hash function and
even partition methods for segmentation. Although an even
partition can guarantee that each sub-dictionary has the same
number of tokens, it is actually very ineffective as it cannot get
rid of the skewness problem. For a given partition strategy Pd,
if tokens belonging to the same sub-dictionary appear together
frequently in elements, there will be some segments that
appear frequently in the whole dataset, and the corresponding
inverted lists will be much longer. In this case, such high-
frequent segments acts similar as “stop words” in information
retrieval, which will result in weaker filter power.

To address this problem, we investigate the partition strategy
that can help reduce the number of high-frequent segments.

One straightforward way is to find segments with high fre-
quency using an existing frequent pattern mining technique [9]
in the preprocessing stage. Then when allocating the tokens
into sub-dictionaries, we will try to put tokens belonging to
high-frequent segments into different sub-dictionaries and thus
make the overall partition balanced. However, this method is
rather expensive in time complexity since the preprocessing
time should also be considered as part of the total execution
time, such a heavy overhead cannot be accepted. Also it
is difficult to set proper hyper-parameters of the mining
algorithm in this scenario. Moreover, collecting and storing
the co-occurrence information requires non-trivial time and
space overhead. Therefore, we cannot directly adopt the
co-occurrence information to construct the sub-dictionaries
though its effectiveness.

Nevertheless, we can make use of the token frequency to
find a balanced partition following this route. To estimate the
co-occurrence of tokens, we approximate it by an assumption:
if two tokens appear frequently, then there is also great chance
for them to occur in the same segment. Given the segment
number d, we denote the total frequency of tokens in Ti as
Fi (i ∈ [1 · · · d]). Then the higher total frequency a sub-
dictionary has, the higher probability it contains high-frequent
segments. Therefore, a good partition strategy should make the
maximum total frequency among all sub-dictionaries as small
as possible. Based on this idea, we can formally define the
optimal partition strategy in Definition 4.

Definition 4 (Optimal Partition Strategy): Given the global
token dictionary T and the number of segments d, an optimal
partition strategy will split T into d disjoint sub-dictionaries
with the minimum value of Fmax = maxi∈[1,d] Fi.

Theorem 1 (NP-Completeness): Finding an optimal partition
strategy is NP-Complete.
Proof [Sketch]: We can prove it by reducing from Subset
Sum2, which is a known NP-Complete problem. �

Unfortunately, as is proved in Theorem 1, finding an optimal
partition is a NP-Complete problem. To address this issue, we
design a frequency-aware algorithm to find an approximate
solution. The basic idea is that given a token t, we will
simply allocate it to the sub-dictionary Tmin currently with
the minimum total frequency Fmin = mini∈[1,d] Fi. Then we
can construct all d sub-dictionaries by just scanning T once.
Moreover, to improve the quality of partition, we allocate
tokens with larger frequency first. Indeed, if a token with large
frequency is allocated late when currently all sub-dictionaries
have already been balanced, the total frequency of one sub-
dictionary will be obviously larger than others. This will
increase the value of Fmax. If we can process such tokens
earlier, there will not be such a problem. Therefore, we first
sort all tokens of T in the decreasing order of token frequency
before allocation. It is easy to see that this frequency-aware
partition strategy satisfied the correctness, which is formally
stated in Theorem 2.

2https://en.wikipedia.org/wiki/Subset sum problem

Fig. 6. Even partition vs. frequency-aware partition.

Theorem 2 (Correctness): The frequency-aware partition
strategy satisfied the correctness defined in Definition 3.

Example 4: Consider the records in Figure 6(a) and δ = 0.7,
we have d = 2. With the even partition approach, we will
get the inverted lists in Figure 6(b). Notice that the lengths
of different inverted lists varied greatly, which causes skew-
ness problem. But if we adopt the frequency-aware partition
method, then we will get more balanced inverted lists shown
in Figure 6(c). More precisely, we first sort the tokens based
on their frequencies: (t1, 4), (t2, 4), (t6, 1), (t7, 1), (t9, 1) and
(t10, 1). The frequencies of other tokens are all 0. Then we
first assign t1 to the first sub-dictionary as t1 has the highest
frequency. Now F1 = 4. Then we assign t2 to T2 as currently
F2 = 0 < F1. We can assign the rest tokens in the similar
way. �

Though the frequency-aware partition strategy is effective,
the computation overhead is also heavier. For constructing Pd,
we need to keep finding the sub-dictionary with minimum total
frequency after allocating each token, which requires O(log d)
time using priority queue. So the total time is O(|T | log d),
which is expensive when making on-line computation for each
element. We notice that for elements with the same segment
number, the partition strategy is the same. So we can pre-
compute the partition strategies for each segment number d
and apply it to each element in the on-line step. Then given
an element with l tokens, the time for on-line constructing all
its segment is just O(l).

The performance of preprocessing can be further improved
by incrementally constructing Pd from Pd+1. The basic idea
is that after we constructing Pd+1, we can just reallocate the
tokens in one sub-dictionary to the remaining d ones. Then
we can get Pd by just visiting tokens in the sub-dictionary
Pd+1 instead of re-allocating all tokens in T . And the time
complexity will be O(|Pd+1| log d), where Pd+1 ⊆ T .

Algorithm 2 demonstrates the process of frequency-aware
partition strategy. We start from the maximum segment number
d>. To initialize the algorithm, we sort all tokens in descent
order of token frequency (line 2). The total frequency of each
group is initialized as 0 (line 3). Next for each token in the
global dictionary, we assign it to the group with minimum total
frequency (line 5). If there is a tie, we will assign it to the
group with the smaller subscription. After assigning a token,
we will update the total frequency of the assigned group and

Algorithm 2: Frequency-aware Incremental Partition(x, T ,
d⊥, d>)
Input: T : The global token dictionary;
d⊥,d>: The lower/upper bound of segment number
Output: P: the set of token maps for all segment

numbers
begin1

Sort all tokens in T in the decreasing order of2

frequency;
Initial d> sub-dictionaries in Pd> as empty;3

for token t ∈ T do4

Add t into the partition Tmin with minimum total5

frequency;
Update the frequency of Tmin and decide the6

new partition with minimum total frequency;
P = P ∪ Pd> ;7

for d = d> − 1 to d⊥ do8

Construct sub-dictionary Pd;9

P = P ∪ Pd;10

return P;11

end12

Fig. 7. Example of incremental partition (from d = 5 to d = 4).

the current group with minimum frequency (line 6). We can
obtain Pd> after allocating all tokens. Then we incrementally
create the partition strategy for other segment numbers. We
create Pd from Pd+1 by allocating the tokens in Pd+1 of
Pd+1 into the first d sub-dictionaries (line 9). Finally we obtain
partition strategies for all segment numbers (line 11).

Example 5: Figure 7 shows an example of creating P4 from
P5. We allocate the tokens in 5th sub-dictionary (i.e., T5) of
P5 into the first 4 sub-dictionaries. Inside T5, there are two
tokens t8 and t6 with frequencies 4 and 2 respectively. We first
move token t8 into T2 as currently F2 has the smallest value. 3

Then we update F2 from 7 to 11. Similarly, t6 is relocated to
T3 and F3 is updated from 7 to 9. �

V. FURTHER OPTIMIZATIONS

In this section, we propose advanced pruning techniques
to further reduce computational overhead. We first devise a
record-level filter technique in Section V-A. We then propose
an improvement in the verification stage in Section V-B.

3Actually, at this point, F2 = F3 = F4 = 7, we can choose any one from
the T2, T3, and T4.

Finally we discuss how to generalize our framework in Sec-
tion VI.

A. Record-level Filtering Algorithm

Although the partition based signature has strong filter
power, there is still large room for improvement as we have not
yet utilized the record-level threshold in pruning. Previously,
once two records have a pair of candidate elements, they will
be regarded as a candidate record pair. This will result in
many false positives as above filter condition never takes the
record-level similarity threshold into consideration. To avoid
this problem, we further utilize the record-level threshold τ to
design effective filtering techniques.

Given a candidate pair 〈R,S〉 and the record-level threshold
τ , it is easy to see that if SIMδ(R,S) ≥ τ , the cardinality of
R∩̃δS must be no smaller than a particular value LB(R,S).
According to the property of Jaccard, we can deduce such
a lower bound as LB(R,S) = d(|R| + |S|) τ

1+τ e. Then if
the number of potentially matched elements cannot reach
LB(R,S), we can safely prune 〈R,S〉 even they satisfy the
element-level filter.

In order to utilize such information, we need to collect all
candidate element pairs for each pair of candidate records.
There are some elements that do not have any candidate
element and thus make no contribution to increase the value of
|R∩̃δS|. We call such elements orphan element. In the pairs
of candidate records returned by the element-level filter, if an
element ri ∈ R does not have common segment with ∀sj ∈ S,
then it is an orphan element. The formal definition is shown
in Definition 5.

Definition 5 (Orphan Element): Given two records R,S ∈
R and the element-level threshold δ, if ∀sj ∈ S, sim(ri, sj) <
δ. Then we call ri an Orphan Element of R.

For example, consider two records R = {{t1, t2, t3}, {t4}}
and S = {{t1, t2, t3, t4}, {t5, t6}}, assume the element-level
threshold δ = 0.7, then the element r2 = {t4} is an orphan
element, as sim(r2, s1) = 0.25 and sim(r2, s2) = 0.

We can make use of the orphan elements to estimate the
upper bound of |R∩̃δS|. Given a candidate pair 〈R,S〉, we
denote the number of orphan elements in record R as NR

〈R,S〉.
If there is a large number of orphan elements, we can safely
prune this pair since there is no possibility that their Fuzzy
Similarity can reach τ . We formally stated it in Lemma 2.

Lemma 2 (Record-level Filter): Given two records R,S
and the record-level similarity threshold τ , we can get the
number of orphan elements NR

〈R,S〉 and N S
〈R,S〉 respectively.

If min(|R| −NR
〈R,S〉, |S| −N

S
〈R,S〉) < d(|R|+ |S|)

τ
1+τ e, then

R and S cannot be similar.
Proof : As is shown above, if SIMδ(R,S) ≥ τ , we should

have the fuzzy overlap |R∩̃δS| ≥ d(|R|+|S|) τ
1+τ e. According

to the definition, the upper bound of number of elements in
R(S) that potentially has a matched element in S(R) is |R| −
NR
〈R,S〉 (|S|−NS

〈R,S〉). Therefore, the upper bound of |R∩̃δS|
would be min(|R|−NR

〈R,S〉, |S|−N
S
〈R,S〉). If this value cannot

reach d(|R|+ |S|) τ
1+τ e, we can safely prune 〈R,S〉. �

Example 6: Consider the records R = {t1, t2, t3}, {t4}}
and S = {{t1, t2, t3, t4}, {t5, t6}} again, we have NR

〈R,S〉 =

1 and N S
〈R,S〉 = 1 since r2 = {t4} and s2 = {t5, t6} are

orphan elements. Thus min(|R| − NR
〈R,S〉, |S| − N

S
〈R,S〉) =

min(2 − 1, 2 − 1) = 1. If the given threshold τ = 0.8, then
min(|R| − NR

〈R,S〉, |S| − N
S
〈R,S〉) = 1 < d(|R|+ |S|) τ

1+τ e =
3. According to Lemma 2, SIMδ(R,S) is guaranteed to be
smaller than τ (i.e., 0.8), so 〈R,S〉 is pruned. �

To utilize Lemma 2, we can just collect the information of
candidate elements for each pair of candidate records in line
12 of Algorithm 1. Then in line 15 of Algorithm 1, we will
first check whether the candidate pair satisfies Lemma 2. If
not, we can directly discard it.

B. Finer Granularity Optimization for Verification

Next we discuss how to improve the verification stage.
Given a candidate pair of records 〈R,S〉, the verification of
record-level similarity consists of two steps. The first step is to
construct the bipartite graph G by calculating the element-level
similarity between each ri ∈ R and sj ∈ S. If sim(ri, sj) ≥ δ,
there will be a corresponding edge in the bipartite graph. The
second step is to perform weighted bipartite matching over G
and obtain the value of |R∩̃δS|. This can be done with the
help of the well-known KM algorithm [11].

First of all, we can construct the bipartite graph with the
help of intermediate results returned by the element-level filter.
According to Lemma 1, we will calculate the similarity be-
tween two elements only when they share a common segment.
If there are y candidate element pairs, we need y calculations.
Without such information, we need to verify the element-level
similarity between all |R|∗|S| pairs of elements. For example,
consider two records R and S whose sizes are 4 and 6. Without
the help of information of candidates, we need to verify all
24 pairs. Assume there are 3 candidate element pairs, then we
just need to verify these three pairs.

The process of performing record-level filter can also be
refined by checking whether sim(Ri, Sj) ≥ δ for each
candidate pairs of elements. If two elements have common
segment, it does not definitely mean that they are similar.
By verifying the element-level similarity, we can remove false
positives and get the exact values of NR

〈R,S〉 and N S
〈R,S〉.

Next we will show that the expensive weighted bipartite
matching step can be avoided after the construction of G. To
reach this goal, we need to deduce a upper bound UB(R,S)
of the weighted maximum bipartite matching for candidate
pair 〈R,S〉. If this upper bound is smaller than τ , then the
two records cannot be similar. Then we can avoid running the
expensive KM algorithm.

To deduce such an upper bound, we utilize the König’s
Theorem [30]. The basic idea is that for a given bipartite
graph, there is an equivalence between the Bipartite Matching
and the Vertex Cover problems. Therefore, determining the
weighted maximum bipartite matching is equivalent to finding
the maximum weighted vertex cover from the graph. As the
exact algorithm is as expensive as the KM algorithm, we will
use a greedy approximation to find a upper bound of it. That

Fig. 8. Upper Bounding the Bipartite Matching Result

is, we first sort all the edges by weights. Then we greedily pick
up the maximum weighted edge which can include a new node
until all nodes are covered. In this way, we can get an upper
bound UB(R,S) with the selected edges, which is formally
stated in Theorem 3.

Theorem 3: Given a bipartite graph G, the upper bound
UB(R,S) can be obtained by above greedy algorithm. If
UB(R,S) < τ(|R|+|S|)

1+τ , we can safely prune 〈R,S〉.
Example 7: Given two records R, S with 3 and 4 el-

ements respectively. Assume τ = δ = 0.5 and we have
the bipartite graph shown in Figure8(a). The true value of
maximal weighted matching is 0.55 + 0.51 + 0.52 = 1.58
(shown in Figure 8(b)). By applying the greedy algorithm, we
have UB(R,S) = 2.13 (selected edges are colored pink in
Figure 8(c)), which is less than 0.5×(3+4)

1+0.5 = 2.3. Thus, we
can safely prune 〈R,S〉. �

Compared with our approach, Fast-Join [26] did not apply
optimization in the verification stage. Although Silkmoth [6]
adopted some refinement strategies after generating candi-
dates, it will directly adopt the KM algorithm to calculate the
fuzzy overlap once the bipartite graph is constructed. As our
approach can make use of Theorem 3 to avoid the expensive
KM algorithm, there will be less overhead in this stage.
Finally, we have the whole verification process in Algorithm 3.

VI. DISCUSSION

In this section, we introduce how to generalized our MF-
Join framework to different record-level and element-level
similarity functions.

A. Support Different Record-Level Similarity Functions

TABLE II
THE SETTINGS FOR DIFFERENT RECORD-LEVEL SIMILARITY FUNCTIONS

Function Length Filter Bound for Lemma 2
Jaccard [|R| ∗ τ, |R|

τ
] d(|R|+ |S|) τ

1+τ
e

Cosine [|R| ∗ τ2, |R|
τ2

]
√
|R| ∗ |S| ∗ τ

Dice [|R| ∗ τ
2−τ , |R| ∗

2−τ
τ

] τ
2
(|R|+ |S|)

To support different record-level similarity functions, we
need different lower bound of |R∩̃δS|. In this case, only
the filter technique in Lemma 2 and the length filter will be
influenced by the record-level similarity function. We show
the details in Table II.

Algorithm 3: Verify(R, S, τ , δ)
Input: R, S: Two candidate records; τ : The record-level

similarity threshold;
δ: The element-level similarity threshold
Output: Boolean value: whether they are similar.
begin1

Construct the bipartite graph G = 〈R,S,E〉2

according to the intemediate results of Algorithm 1;
Initialize set of nodes N = ∅, set of selected edges3

T = ∅;
Sort all edges in E by weight;4

while |N | 6= |R|+ |S| do5

Find the edge e with maximum weight that can6

increase |N |;
Add e into T ;7

Add nodes associated to e into N ;8

Calculate UB(R,S) by adding up the weights of all9

edges in T ;
if UB(R,S) < τ then10

return False;11

Compute SIMδ(R,S) by weighted bipartite matching12

over G;
if SIMδ(R,S) ≥ τ then13

return True;14

return False;15

end16

B. Support Different Element-Level Similarity Functions

For different element-level similarity functions, the number
of segments F(l, δ) in Algorithm 1 should be different. The
cases for Cosine and Dice are straightforward. For Cosine, the
number of segments should be 1−δ2

δ2 l, while for Dice the value
is 2 1−δ

δ l.
For Edit Similarity as the element-level similarity, we need

to first transform the element into a set of q-chunks and
then generate the partition based signatures. Specifically, for
a string r with length l, the number of q-chunks is dl/qe.
Given two strings r, s(|r| > |s|) and the threshold of edit
similarity δ, as we have EDS(r, s) ≥ δ and also EDS(r, s) <

l
l+dl/qe−F(l,δ) . So we can get l

l+dl/qe−F(l,δ) > δ. Following
this route we can have the bound of F(l, δ) as is detailed in
Lemma 3.

Lemma 3 (Segment Number for Edit Similarity): Given an
element with string length l and the element-level similarity
threshold δ, the number of segments used for element-level
filter in Algorithm 1 is F(l, δ) = l + dl/qe − l

δ + 1.

VII. EVALUATION

In this section, we conduct an extensive set of experiments
to demonstrate the efficiency of our proposed techniques.

A. Experiment Setup

We evaluate our proposed techniques on two real world
datasets which have been widely used in related studies.

TABLE III
STATISTICS OF DATASETS

Dataset Cardinality Avg Record Length Avg Element Length Element-level similarity Record-level similarity
Query Log 1.2 million 3.29 5.64 Edit Similarity Jaccard

DBLP 1 million 4.77 5.36 Jaccard Dice

0

2000

4000

6000

8000

0.9 0.85 0.8 0.75 0.7

J
o

in
 T

im
e

(s
)

Similarity Threshold

Hash
Even

Frequency
F+V

(a) QUERY LOG

0

1000

2000

3000

4000

0.9 0.85 0.8 0.75 0.7

J
o

in
 T

im
e

(s
)

Similarity Threshold

Hash
Even

Frequency
F+V

(b) DBLP
Fig. 9. Effect of Proposed Techniques: Join Time

0

5

10

15

20

25

0.9 0.85 0.8 0.75 0.7

N
u

m
b

e
r

o
f

C
a

n
d

id
a

te
s
 (

1
0

8
)

Similarity Threshold

Hash
Even

Frequency
F+V

(a) QUERY LOG

0

5

10

15

20

25

0.9 0.85 0.8 0.75 0.7

N
u

m
b

e
r

o
f

C
a

n
d

id
a

te
s
 (

1
0

8
)

Similarity Threshold

Hash
Even

Frequency
F+V

(b) DBLP
Fig. 10. Effect of Proposed Techniques: Number of Verifications

QUERY LOG 4 is a collection of query log from search engines.
Each word in a line is regarded as an element. DBLP 5

contains multiple attributes of the publication, such as title,
authors and venue. We use all the non-numerical attributes
from the original XML data. Each attribute is regarded as
an element and each word in it is regarded as a token. For
each dataset, we use different record-level and element-level
similarity functions. The detailed information is shown in
Table III.

We compare our framework with two state-of-the-art meth-
ods Fast-Join [26] and Silkmoth [6]. For Fast-Join, we
obtain the code from its authors; as there is no public available
code for Silkmoth, we implement it by ourselves. The metric
for evaluation is the overall join time. The element-level
similarity threshold is set as δ = 0.8 by default. The reason is
that if δ is too small, it will involve many dissimilar element
pairs and make the join results not reasonable; while a larger δ
value is too strict and will filter out many similar records. All
experiments are conducted on a server with an Intel Xeon(R)
CPU processor, 16 GB RAM, running Ubuntu 14.04.1. All the
algorithms are implemented in C++ and compiled with GCC
4.8.4.

B. Effect of Proposed Techniques

We first evaluate the effect of our proposed techniques in
this paper. We implement four methods: Hash uses the hash
function for segmentation; Even utilizes the even partition for

4http://www.gregsadetsky.com/aol-data/
5https://dblp.uni-trier.de/xml/

0

600

1200

1800

2400

3000

3600

0.9 0.85 0.8 0.75 0.7

T
o

ta
l
T

im
e

Similarity Threshold

Verification
Filter

Preprocessing

(a) QUERY LOG

0

400

800

1200

1600

2000

0.9 0.85 0.8 0.75 0.7

T
o

ta
l
T

im
e

Similarity Threshold

Verification
Filter

Preprocessing

(b) DBLP
Fig. 11. Join Time Breakdown

segmentation; Frequency adopts the frequency-aware method
for segmentation; F+V further integrates Frequency with
the upper bounding technique proposed in Section V-B. The
results of join time are shown in Figure 9. We can see that
Frequency significantly outperforms Hash and Even as it
can avoid frequent segments by properly allocating the tokens.
For example, on dataset QUERY LOG when τ = 0.85, Hash
and Even took 2575.24 and 2487.63 seconds, respectively.
Frequency reduces the time to 1104.52 seconds while F+V
only requires 549.32 seconds. The performance of Even is
comparable to Hash. The reason is that although Even can
partition the global dictionary evenly, it could not avoid the
frequent segments. Then the filter power will be hurt and
thus lead to poor performance. Compare with Frequency,
F+V performs better under all settings. This demonstrates
the effectiveness of the proposed verification technique which
can avoid the computation of maximum weighted bipartite
matching in some cases.

We then evaluate the number of candidates to judge the filter
power and further demonstrate the effectiveness of proposed
techniques. Figure 10 shows the results of above methods. We
can see that it is consistent with the results in Figure 9. For
example, on dataset DBLP when τ = 0.8, the number of
candidates for Hash, Even and Frequency is 1722094749,
1538984732 and 482984711, respectively. Although F+V can-
not reduce the number of candidates, it can terminate the
verification stage after constructing the bipartite graph. Thus
it can also help improve the performance.

We also break down the overall join time into three parts
to make further analysis. Here we report the results of our
best method F+V in Figure 9. The detailed execution time
of preprocessing, filtering and verification stage is shown in
Figure 11. We can see that the preprocessing time is trivial
compared with the filtering and verification stage. In most
cases the verification time dominates the overall join time.
This result makes sense as the verification of fuzzy matching
is much more expensive than other simple similarity functions.
It also demonstrates the requirement of devising effective filter
techniques to reduce false positive. As shown above, the filter

0

2000

4000

6000

8000

10000

12000

0.9 0.85 0.8 0.75 0.7

J
o

in
 T

im
e

(s
)

Similarity Threshold

Fast-Join
Silkmoth
MF-Join

(a) QUERY LOG

0

2000

4000

6000

8000

0.9 0.85 0.8 0.75 0.7

J
o

in
 T

im
e

(s
)

Similarity Threshold

Silkmoth
MF-Join

(b) DBLP
Fig. 12. Compare with State-of-the-art Methods: Varying τ

0

2000

4000

6000

8000

10000

12000

14000

0.9 0.85 0.8 0.75

J
o

in
 T

im
e

(s
)

Element-level Threshold

Fast-Join
Silkmoth
MF-Join

(a) QUERY LOG

0

2000

4000

6000

8000

0.9 0.85 0.8 0.75

J
o

in
 T

im
e

(s
)

Element-level Threshold

Silkmoth
MF-Join

(b) DBLP
Fig. 13. Compare with State-of-the-art Methods: Varying δ

cost is reasonable and will not lead to much overhead while
keeping strong filter power.

C. Comparing with State-of-the-art Methods

We compare our method with state-of-the-art methods
Fast-Join and Silkmoth. As Fast-Join only supports Edit
Similarity as the element-level similarity function, we only
compare with it on QUERY LOG dataset. Here MF-Join is
the F+V method introduced before. From the results shown in
Figure 12, we have the following observations:

First, we can see that MF-Join achieves the best results
on all settings and has obvious performance gain over ex-
isting methods. For example, on dataset QUERY LOG when
τ = 0.75, the total join time for Fast-Join, Silkmoth and MF-
Join is 5758.02, 10873.22 and 3308.67 seconds, respectively.
Second, on the QUERY LOG dataset, Fast-Join performs better
than Silkmoth although both of them adopts q-gram based
signatures. One reason can be that Fast-Join has devised the
token sensitive signature which can further reduce the number
of candidates while Silkmoth just directly utilized the variants
of q-grams. Third, MF-Join outperforms Silkmoth under all
settings. This can be attributed to the two-fold reasons. On the
one hand, we adopt partition based signature in the element-
level, which could reduce the number of signatures for all
records and thus lead to better filter power. On the other
hand, we enable the early termination in the verification
stage by deducing an upper bound of record-level similarity.
Then we can avoid doing bipartite matching even if we have
constructed the bipartite graph. Therefore, MF-Join can save
more unnecessary computation compared with Silkmoth.

In the next experiment, we vary the value of element-level
similarity threshold δ and report the overall join time. For
this experiment, we fix the value of record-level similarity
threshold τ as 0.8. The results are shown in Figure 13.
We can see that with varying value of δ, our method still
performs better than state-of-the-art methods. The general
trend of performance comparison is similar with those in

Figure 12. The benefits mainly come from the effect of
partition based signatures, which have greater filter power for
different element-level similarity thresholds.

TABLE IV
INDEX SIZE (MB) WHEN δ = 0.8

Dataset Fast-Join Silkmoth MF-Join
Query Log 106.7 84.2 59.7

DBLP 99.2 81.6 56.18

As the major memory consumption comes from the inverted
index, we also evaluate the index size of different methods.
The results are shown in Table IV. We can see that among
all the methods, MF-Join has the minimum index size. The
reason is that as we adopt the partition based signature in the
element-level, our signatures are disjoint segments. Compared
with q-grams that have more overlapping with each other, MF-
Join has much fewer signatures. Therefore, the total index size
will also be smaller. The reason that Silkmoth has smaller
index size than Fast-Join might be that as Fast-Join utilizes
the token sensitive signature, it needs more space to record
the related information in the inverted lists.

D. Evaluation of Effectiveness

Next we look at the effectiveness of Fuzzy Similarity. Since
the effectiveness of Fuzzy-Jaccard on QUERY LOG dataset has
been justified by [26], here we just look at the case of DBLP.
We compare the result quality of our similarity function,
i.e., Fuzzy Similarity with Jaccard and Dice similarity by
evaluating the number of results and precision with different
record-level threshold τ ranging from 0.75 to 0.95. We follow
the settings in [26] to choose 100, 000 records from the DBLP
dataset and calculate the precision based on 100 randomly
selected similar pairs from the produced results. Table V
reports the quality results of Jaccard, Dice similarity and
Fuzzy Similarity (with element-level threshold δ = 0.8).

TABLE V
RESULT QUALITY.

τ Jaccard Dice Fuzzy Similarity
Results Precision # Results Precision # Results Precision

0.75 975 84% 449 35% 2144 86%
0.80 623 91% 302 39% 1589 92%
0.85 482 94% 228 48% 1132 99%
0.90 313 97% 146 53% 653 99%
0.95 204 100% 113 61% 327 100%

We can make following observations: Firstly, Fuzzy Sim-
ilarity generates more similar string pairs than others under
the same threshold settings. This is because Fuzzy Similarity
considers two levels of similarities, i.e., element-level and
record-level similarities. For example, when τ = 0.80, Fuzzy
Similarity outputs 1589 similar pairs, while Jaccard and Dice
only return 623 and 302 pairs respectively. Secondly, Fuzzy
Similarity achieves the highest precision. For example, when
τ = 0.90 , the precision values of Fuzzy Similarity is 99%
while those of Jaccard and Dice are 97% and 53%.

0

1000

2000

3000

4000

20 40 60 80 100

J
o

in
 T

im
e

(s
)

Percentage of Data Used

τ=0.9
τ=0.85

τ=0.8
τ=0.75

τ=0.7

(a) QUERY LOG

0

500

1000

1500

2000

20 40 60 80 100

J
o

in
 T

im
e

(s
)

Percentage of Data Used

τ=0.9
τ=0.85

τ=0.8
τ=0.75

τ=0.7

(b) DBLP
Fig. 14. Scalability

E. Scalability

Finally we evaluate the scalability. We vary the number of
records in each dataset and report the overall join time. The
results are shown in Figure 14. We can see that the join time
increases steadily with the increasing number of records for
all thresholds. For example, on DBLP for τ = 0.75. When the
size of dataset scales from 20% to 100%, the corresponding
total join time is 49.5, 183.65, 274.39, 582.3 and 3308.67
seconds. This shows its potential scalability on larger datasets.

VIII. CONCLUSION

In this paper, we introduced MF-Join, an efficient frame-
work for fuzzy string similarity join which flexibly supports
multiple similarity functions. We devised and implemented a
multi-level filtering mechanism to enhance the filter power
from multiple aspects. Specifically, we proposed the partition
based signature at the element-level as well as a frequency-
aware partition strategy to improve it. We devised a count-
based filter at the record-level to further prune dissimilar
candidates. We also deduced an effective upper bound for
fuzzy similarity to reduce the computation overhead in the
verification stage. Experimental results on two popular datasets
demonstrate the efficiency of our proposed techniques.

REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins.
In VLDB, pages 918–929, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. In WWW, pages 131–140, 2007.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-
wise independent permutations (extended abstract). In STOC, pages
327–336, 1998.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for
similarity joins in data cleaning. In ICDE, page 5, 2006.

[5] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personaliza-
tion: scalable online collaborative filtering. In WWW, pages 271–280,
2007.

[6] D. Deng, A. Kim, S. Madden, and M. Stonebraker. Silkmoth: An
efficient method for finding related sets with maximum matching con-
straints. PVLDB, 10(10):1082–1093, 2017.

[7] D. Deng, G. Li, H. Wen, and J. Feng. An efficient partition based method
for exact set similarity joins. PVLDB, 9(4):360–371, 2015.

[8] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava. Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD, pages 1–12, 2000.

[10] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An
experimental evaluation. PVLDB, 7(8):625–636, 2014.

[11] H. W. Kuhn. The hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97, 1955.

[12] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. In ICDE, pages 257–266, 2008.

[13] G. Li, D. Deng, J. Wang, and J. Feng. PASS-JOIN: A partition-based
method for similarity joins. PVLDB, 5(3):253–264, 2011.

[14] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String similarity measures
and joins with synonyms. In SIGMOD, pages 373–384, 2013.

[15] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation of set
similarity join techniques. PVLDB, 9(9):636–647, 2016.

[16] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding:
A versatile graph matching algorithm and its application to schema
matching. In ICDE, pages 117–128, 2002.

[17] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. Efficient exact edit
similarity query processing with the asymmetric signature scheme. In
SIGMOD, pages 1033–1044, 2011.

[18] J. Qin, Y. Wang, C. Xiao, W. Wang, X. Lin, and Y. Ishikawa. GPH:
similarity search in hamming space. In ICDE, pages 29–40, 2018.

[19] J. Qin and C. Xiao. Pigeonring: A principle for faster thresholded
similarity search. PVLDB, 12(1):28–42, 2018.

[20] C. Rong, C. Lin, Y. N. Silva, J. Wang, W. Lu, and X. Du. Fast and
scalable distributed set similarity joins for big data analytics. In ICDE,
pages 1059–1070, 2017.

[21] A. D. Sarma, L. Fang, N. Gupta, A. Y. Halevy, H. Lee, F. Wu, R. Xin,
and C. Yu. Finding related tables. In SIGMOD, pages 817–828, 2012.

[22] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive hashing for
fast similarity search. PVLDB, 5(5):430–441, 2012.

[23] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS: solving c-
approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index. PVLDB, 8(1):1–12, 2014.

[24] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins
using mapreduce. In SIGMOD, pages 495–506, 2010.

[25] J. Wang, G. Li, D. Deng, Y. Zhang, and J. Feng. Two birds with one
stone: An efficient hierarchical framework for top-k and threshold-based
string similarity search. In ICDE, pages 519–530, 2015.

[26] J. Wang, G. Li, and J. Feng. Fast-join: An efficient method for fuzzy
token matching based string similarity join. In ICDE, pages 458–469,
2011.

[27] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an
adaptive framework for similarity join and search. In SIGMOD, pages
85–96, 2012.

[28] J. Wang, C. Lin, M. Li, and C. Zaniolo. An efficient sliding window
approach for approximate entity extraction with synonyms. In EDBT,
2019.

[29] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang. Leveraging set
relations in exact set similarity join. PVLDB, 10(9):925–936, 2017.

[30] D. B. West et al. Introduction to graph theory, volume 2. Prentice hall
Upper Saddle River, 2001.

[31] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB, 1(1):933–944,
2008.

[32] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In
ICDE, pages 916–927, 2009.

[33] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for
near duplicate detection. In WWW, pages 131–140, 2008.

[34] J. Yang, W. Zhang, S. Yang, Y. Zhang, and X. Lin. Tt-join: Efficient
set containment join. In ICDE, pages 509–520, 2017.

[35] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and X. Yuan. An efficient
framework for exact set similarity search using tree structure indexes.
In ICDE, pages 759–770, 2017.

[36] Y. Zhang, J. Wu, J. Wang, and C. Xing. A transformation-based
framework for knn set similarity search. IEEE Trans. Knowl. Data
Eng., 2019.

[37] Y. Zheng, Q. Guo, A. K. H. Tung, and S. Wu. Lazylsh: Approximate
nearest neighbor search for multiple distance functions with a single
index. In SIGMOD, pages 2023–2037, 2016.

