

S.R. Urs, J.-C. Na, and G. Buchanan (Eds.): ICADL 2013, LNCS 8279, pp. 45–52, 2013.
© Springer International Publishing Switzerland 2013

A New Plug-in System Supporting
Very Large Digital Library

Jin Wang, Yong Zhang, Yang Gao, and Chunxiao Xing

Research Institute of Information Technology
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
{wangjin12,yang-gao10}@mails.tsinghua.edu.cn,

{zhangyong05,xingcx}@tsinghua.edu.cn

Abstract. In the era of Big Data, actual demands of collecting large volumes of
complex digital information have brought new challenges to digital library
software. This scenario calls for the construction of Very Large Digital Library
(VLDL). New approaches and technologies are needed to deal with the various
issues in designing and developing VLDL. In this paper, we design a plug-in
system—PuntStore as a general solution to very large digital library. PuntStore
supports different kinds of storage engines and index engines to deal with the
problem of storing and retrieving data efficiently. We also design a new index
engine pLSM in PuntStore to meet the specific needs in digital libraries. The
successful adoption of PuntStore in the project of the Digital Library on History
of Science and Technology in China (DLHSTC) shows that PuntStore can
function effectively in supporting VLDL systems.

Keywords: VLDL, plug-in system, PuntStore, storage engine, index.

1 Introduction

In the era of Big Data, the actual demands of data collection and repository have
brought new challenges to digital library software. The past few years have witnessed
the soaring volume as well as complex kinds of digital information to be collected and
stored. Thus a variety of measures should be taken to deal with various data forms,
large volumes, metadata heterogeneous, strictly demands of the data exchange and
sharing, widely distributed content and long-term preservation. This calls for the con-
struction of Very Large Digital Library (VLDL), which has raised many new issues.

Nevertheless, the definition of VLDL still remains to be an open problem. It cannot
be considered as very large databases storing digital contents. As described in [2],
digital library systems should deal with architecture management, functionality, user
management besides content management. Similar to Big Data, the matter of “very
largeness” includes the features of volume, velocity and variety. Digital Libraries
becomes “very large” when any of these aspects reaches a magnitude that requires
specialized methods [4]. Thus a variety of new approaches and technologies are
needed in VLDL’s data management, including data integration, data storage and
access, and data ranking. Some existing DL systems have made some adaption to

46 J. Wang et al.

VLDLs. For example, J. Thompson has made an attempt to improve the performance
of Greenstone in National Library of New Zealand’s PapersPast digital library by
applying parallel processing [7]. The Europeana project has also taken some measures
in metadata management in the background of VLDL, such as storing the metadata of
contents, using the Semantic Element as its data model [9].

In order to satisfy the specific needs of VLDL, it is crucial to have an efficient way
of storing and retrieving contents with different formats or even different structures.
We have designed a plug-in system PuntStore, as a general solution. PuntStore can
fulfill the task of supporting heterogeneous application by dividing this task into spe-
cific steps and providing a variety of plugs for different steps. As a plug-in system,
PuntStore provides a universal interface through which storage and index mechanisms
of other DBMS could be integrated into the PuntDB, the database system offered by
PuntStore. PuntStore also makes optimization in storage, distribution, scalability,
heterogeneity and security. To reach the goal of efficiently retrieving heterogeneous
data, we design a new index engine pLSM for PuntStore.

The paper is organized as follows: Section 2 describes an overview of PuntStore.
Section 3 presents its adoption in the practical project of Digital Library on History of
Science and Technology in China (DLHSTC). Section 4 provides the detail of storage
engine and index engine in PuntStore and the design of pLSM index engine. Section 5
is concerned with two experiments: one is about multiple storage engines on different
datasets, another is pLSM index, showing how it outperforms state-of-art index en-
gines. Finally, we conclude in Section 6.

2 System Overview

The main problem that PuntStore is faced with is to deal with massive, complex, he-
terogeneous and continuous changing digital information. Yet there also exists a large
amount of structured data which should be managed by relational DBMS. PuntStore
also has to satisfy various kinds of needs for information retrieving. Based on the
above consideration, we design the three-layer architecture for PuntStore.

2.1 The Architecture of PuntStore

As is shown in Figure 1, PuntStore consists of three layers:

• Storage Layer: Storage Layer is the core of PuntStore. The main function of Sto-
rage Layer is to store and manage data, create and maintain indexes. The Storage
Layer consists of many PuntDBs, which consists of many PuntTables. There is a
record library and an index library in each PuntTable. PuntDB and PuntTable
will be described in details in 2.2. To manage metadata in PuntStore, we design a
structure named Punt Digital Object (PDO), which will be described in 2.3.

• Management Layer: Management Layer is responsible for parsing requests sub-
mitted by Service Layer. Then it would finish the practical manipulations on Punt-
Table and PuntDB according to the interfaces offered by Storage Layer. In order to
transmit messages between different layers, we design Message Object (MO),
which will also be described in 2.3.

 A New Plug-in System Supporting Very Large Digital Library 47

 Fig. 1. The Overall Architecture of PuntStore Fig. 2. The Data Model of PuntDB

• Service Layer: Service Layer offers different services to users according to data
and index management interface provided by Management Layer. These services
include creating database, table and index, manipulating insertion, query, updating,
deletion and analysis on data.

2.2 PuntDB

PuntDB is an optimized NoSQL database to support the storage and analysis of mas-
sive data. Just like the SAP HANA database in the SAP HANA Application [3],
high-level applications in PuntStore are based on the storage functions provided by
PuntDB. The data model of PuntDB is shown in Figure 2.

Every PuntDB can include many PuntTables, which are the actual “repositories” in
the PuntStore system. A PuntTable encapsulates multiple storage systems and provides
a uniform data management interface for the applications. Applications can choose its
storage strategy or make combination strategies without modifying their data opera-
tions. Each PuntTable in PuntDB has multiple records. Every record has an ID as the
unique identifier, just like the primary key in relational database. The rest part of a line
consists of a key and the corresponding value, just like the property and its value in
relational database. What is different from relational database is that PuntStore does not
have a global schema, the property and number of elements in each line can be different
from those of other lines. Moreover, because of trading off ACID properties, PuntDB
could be easily scaled up. Thus the scalability of PuntStore could be ensured.

2.3 Introduction of MO and PDO

As is shown in Figure 3, MO is the object to transfer information between different
layers. It could also be regarded as a service model. MO could be used to provide
different services, such as file, log, user, tag and metadata service. We could encap-
sulate the services inside it and provide a single interface to the outside world. With
the features of low coupling and naturally distributing, the design goal of distributed
storage could be reached by implementing MO in the Storage Layer.

48 J. Wang et al.

Fig. 3. The Architecture of Message Object Fig. 4. The Architecture of Punt Digital Object

PDO is a digital object model to deal with metadata management in Storage Layer.
We could see in Figure 4 that PDO has three components: Digital Object ID, Object
Properties and a list of resources. One PDO could contain different kinds of data re-
sources. Each resource has an identifier and its own contents. With the design of
PDO, we could provide a uniform model for heterogeneous data. In this way, we
could offer a concrete solution to metadata management in PuntStore to meet the
needs of VLDL system.

3 Application

PuntStore has been deployed in the practical project of Digital Library on History of
Science and Technology in China (DLHSTC) . Figure 5 shows its overall architec-
ture. Like Bonolo [6], DLHSTC is a project to facilitate ubiquitous access to know-
ledge. The DLHSTC project aims at building an open digital library to the public and
researchers in specific fields. Its main task is to collect, categorize and rescue the
relics of science and technology history in China. By the end of 2012, the DLHSTC
had included the parts of engineering, mathematics, mechanics, and water conservan-
cy history of China. The DLHSTC system has 10 sub-systems, 85 programs, and 10
sub-databases, and its scale of data has increased to 900GB, including about 250,000
full text data. It is an information-rich, open resource library. A large scale of com-
prehensive resources are integrated in DLHSTC, including full text of historical
documents, microscopic images, synopsis, catalogues, manuscripts, pictures, audios,
videos, and animations. Nowadays, DLHSTC has become the largest comprehensive
scientific data center in China.

Fig. 5. The Project of DLHSTC

 A New Plug-in System Supporting Very Large Digital Library 49

4 Storage and Index Engines

4.1 Storage Engine Overview

The structure of a record library is shown in Figure 6. Since PuntStore is faced with
data with different structures, various kinds of storage mechanisms are needed in the
record library to satisfy the needs for different applications. So PuntStore has a
plug-in storage engine. Storage mechanisms in other DBMS could be easily imple-
mented into PuntStore. Moreover, PuntStore may also support user defined storage
mechanisms. The four main kinds of storage mechanisms in PuntStore are InnoDB,
Redis, Joafip and File. To improve the efficiency of reading and writing files, optimi-
zations have been made to file storage mechanism in PuntDB.

Fig. 6. The Record Library of PuntStore Fig. 7. The Index Library of PuntStore

4.2 Index Engine Overview

Index is a data structure that improves the speed of data retrieval operations on a da-
tabase table at the cost of slower writes and the use of more storage space [10]. A
highly efficient index could improve the speed of data retrieval operations on a data-
base table. To accelerate information retrieval in PuntDB, PuntStore offers efficient
index library and provide a plug-in index engine. Users could create or drop some
kinds of indexes according to specific requirements. As is shown in Figure 7, PuntDB
provides three kinds of indices: B-Tree, Inverted Table and pLSM—a new index en-
gine we developed. With the collaboration of Inverted Table and B-Tree, PuntDB
could also support union query between different fields and keywords.

However, after frequent insertion and updating operations, the logically continuous
leaf nodes of B-Tree would not be physically adjacent, thus a large number of random
I/O would occur when doing query operations. This problem is known as “aging”
problem of B-Tree. To eliminate the aging problem and improve the write throughput,
we present pLSM-Tree index as an index engine in PuntStore to replace B-Tree.

4.3 Implementation of pLSM Index

The pLSM index structure is based on the traditional LSM-Tree index framework [5].
There are two components in pLSM index. The in-memory component is a light
weight data structure—Skip List, while the external-memory component consists of
multiple levels of fractional sorted runs.

50 J. Wang et al.

The insertion happens only in the in-memory component. When this component is
full, it will be merged out to disk. When a sorted run on disk reaches its limited size, it
will also be merged into the next smaller run. Under the LSM-Tree framework, pLSM
can transform random I/Os into sequential ones by perform batch writing. By imple-
menting the logarithm method [1] on the size of sorted runs on disk, the merging op-
eration would be I/O efficient. In order to improve the read performance of pLSM,
we add an auxiliary data structure Bloom Filter to the external component. Bloom
Filter is a random data structure with high space efficiency. Another advantage of
pLSM is that it supports efficient bulk deletion. This feature can help to efficiently
create and drop indices. The specific implementation mechanisms are omitted here
due to limited length of the paper. More details can be found in our previous work [8].

4.4 Summary of pLSM

To sum up, since pLSM performs much better in insertion and eliminates the aging
problem of B-Tree, it can satisfy the speed requirements for collecting, processing
and using entities in VLDLs. When more records are needed to be indexed, we only
need to append a new array after the last sorted runs instead of changing the whole
index structure. So pLSM has good scalability when the number of records increases
sharply. The above features make pLSM a proper choice as the index structure in
VLDL systems.

5 Experiment

In order to evaluate the efficiency of our storage engine and pLSM index engine, we
perform several experiments. All the following experiments are set up on a server
machine with 32GB RAM and a 2.40GHz Intel(R) Xeon E5620 CPU with 2 cores. The
environment for our workbench is Windows server 2008. Storage of different struc-
tured data

To test the efficiency of our plug-in storage engine, we import three different data-
sets into PuntStore using different storage mechanisms. Due to the requirement of our
system, the insertion cost is usually the bottleneck of our system. So we do the inser-
tion experiment here. The datasets are real workloads from the project of DLHSTC:

A. Dataset Text consists of full text contents. The size is 534MB.
B. Dataset Small Records is part of metadata from the DLHSTC project, which are
structured data. The size is 4420MB.
C. Dataset Image consists of image records to be displayed in the digital library. The
size is 1530MB.

From Figure 8, we can see that using file as storage has the best time efficiency.
This is because file has a much simpler storage mechanism than DBMS. However,
file is not able to guarantee usability in some cases since it cannot support data sche-
ma and transactions. Redis performs better than MySQL InnoDB for dataset Image
but much worse for dataset Small Records, which is structured data. With multiple
storage mechanisms implemented, we can make flexible choices according to the
characteristics of data, thus enhancing the flexibility of PuntStore.

 A New

Fig. 8. The Re

5.1 Performance of pL

To verify the efficiency of
B-Tree index. The size of
test of the two indexes. Th
insertion performance than

Fig. 9. Result of Insertion Ex

The second experiment
query and insertion. We add
lization. Figure 10 indicates
of pLSM decreases sharply
insertion ratio. From the exp
B-Tree’s aging problem be
continue inserting into B
B-Tree’s query performanc
time dominates in this situa

6 Conclusion

Very Large Digital Library
tal Library. In term of the s
concrete solution to suppor
History of Science and Tec
a new index method pLSM
problem of B-Tree and perf
depicted above, our design
ture work, we would like

w Plug-in System Supporting Very Large Digital Library

esult of Insertion Using Different Storage Engines

SM

pLSM, we make two experiments comparing pLSM w
each index entry is 64B. The first experiment is insert

he result in Figure 9 shows that pLSM has a much be
B-Tree.

xperiment Fig. 10. Result of Mixed Workload Experime

is a mixed workload with the variation of ratio betw
ded 1 million records to each index in bulk to do the ini
s that with the increasing of insertion ratio, the time ela
y, and the time elapse of B-Tree increases along with
periment, we find that when index size is larger than 1 G
ecomes so serious that it will cost more than one day
-Tree index. So our experiment stops here. Althou

ce is better, it is not practical to use B-tree since insert
ation. Instead, pLSM would be more efficient.

has brought new challenges in almost every issue of D
system aspect, we provide PuntStore, a plug-in system a
t VLDLs and adopt it into the project of Digital Library
hnology in China. In term of the specific aspect, we des

M. The results show that pLSM could overcome the ag
form well in the occasion of VLDL. As the practical re

ns are proper to be implemented in VLDL system. For
to perform large scale distribution of PuntTable in m

51

with
tion
etter

ent

ween
itia-
apse

the
GB,
y to
ugh
tion

Digi-
as a
y on
sign
ging
esult

fu-
more

52 J. Wang et al.

practical projects. There are also many other research topics in VLDL such as archi-
tecture model, security, quality of service and data ranking that can be studied.

Acknowledgement. Our work is supported by National Basic Research Program of
China (973 Program) No.2011CB302302, Key S&T Projects of Press and Publication
under Grant No GXTC-CZ-1015004/02, and Tsinghua University Initiative Scientific
Research Program.

References

1. Bentley, J.L.: Decomposable searching problems. Inf. Process. Lett. 8(5) (1979)
2. Candela, L., Athanasopoulos, G., Castelli, D., Raheb, K.E., Innocenti, P., Ioannidis, Y.,

Katifori, A., Nika, A., Vullo, G., Ross, S.: The Digital Library Reference Model. Deliver-
able D3.2b, DL.org (April 2011)

3. Farber, F., Cha, S.K., Primsch, J., Bornhovd, C., Sigg, S., Lehner, W.: SAP HANA Database
- Data Management for Modern Business Applications. SIGMOD Record (2011)

4. Manghi, P., Pagano, P., Ioannidis, Y.: Second Workshop on Very Large Digital Libraries:in
conjunction with the European Conference on Digital Libraries. SIGMOD Rec. 38, 46–48
(2010)

5. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured merge-tree (LSM-tree).
Acta Informatica 33(4), 351–385 (1996)

6. Phiri, L., Williams, K., Robinson, M., Hammar, S., Suleman, H.: Bonolo: A General Digital
Library System for File-Based Collections. In: Chen, H.-H., Chowdhury, G. (eds.) ICADL
2012. LNCS, vol. 7634, pp. 49–58. Springer, Heidelberg (2012)

7. Thompson, J., Bainbridge, D., Suleman, H.: Towards Very Large Scale Digital Library-
Building in Greenstone Using Parallel Processing. In: ICADL 2011, pp. 332–341 (2011)

8. Wang, J., Zhang, Y., Gao, Y., Xing, C.: pLSM: A Highly Efficient LSM-Tree Index Sup-
porting Real-Time Big Data Analysis. In: COMPSAC 2013, pp. 240–245 (2013)

9. Union E. Europeana (EB/OL) (2012), http://www.europeana.eu/portal/
10. Wikipedia. Database index (EB/OL) (2013),

http://en.wikipedia.org/wiki/Database_index

	A New Plug-in System Supporting Very Large Digital Library
	1 Introduction
	2 System Overview
	2.1 The Architecture of PuntStore
	2.2 PuntDB
	2.3 Introduction of MO and PDO

	3 Application
	4 Storage and Index Engines
	4.1 Storage Engine Overview
	4.2 Index Engine Overview
	4.3 Implementation of pLSM Index
	4.4 Summary of pLSM

	5 Experiment
	5.1 Performance of pL SM

	6 Conclusion
	References

