
Optimizing Parallel Recursive Datalog Evaluation
on Multicore Machines

Jiacheng Wu

wu-jc18@mails.tsinghua.edu.cn

Tsinghua University, Beijing

Jin Wang
∗

jinwang@cs.ucla.edu

University of California, Los Angeles

Carlo Zaniolo

zaniolo@cs.ucla.edu

University of California, Los Angeles

ABSTRACT
Over the past years, there has been a resurgence of interest in

Datalog due to its superior ability of expressing applications that

require recursive computations. However, in addition to expressive

power, supporting analytical tasks with ever-increasing volume

of data requires high performance and scalability. In this paper,

we present DCDatalog, an in-memory Datalog engine specifically

designed for modern shared-memory multicore architectures. Our

key contribution is a novel system architecture that supports a

wide scope of Datalog applications with a light-weight coordina-

tion scheme during parallel evaluation. To this end, we propose

a dynamic scheduling strategy that can generate the parallel exe-

cution plan on-the-fly while reducing concurrent accesses to the

sharedmemory. Experimental results on several large datasets show

that our system significantly outperforms existing parallel Datalog

engines and also scales well with increasing amount of data.

CCS CONCEPTS
• Information systems→Relational parallel and distributed
DBMSs.

KEYWORDS
Datalog, Multicore Machine, Query Processing, Efficiency

ACM Reference Format:
Jiacheng Wu, Jin Wang, and Carlo Zaniolo. 2022. Optimizing Parallel Re-

cursive Datalog Evaluation on Multicore Machines. In Proceedings of the
2022 International Conference on Management of Data (SIGMOD ’22), June
12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3514221.3517853

1 INTRODUCTION
In the past years, there is a resurgence of Datalog due to its abil-

ity to specify declarative data-intensive applications that execute

efficiently over different systems and architectures. The recent the-

oretical advances [32, 55] enable the usage of aggregates in recur-

sions, and this leads to considerable improvements in the expressive

power of Datalog. As a result, Datalog has been widely adopted

to express complicated recursive queries in many domains [13],

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517853

such as artificial intelligence [12], graph analysis [2], knowledge

reasoning [9], declarative network [30] and many others.

With the ever-growing scale of data analysis tasks, a high level

of performance and scalability becomes critical for Datalog sys-

tems. In response to this need, many parallel Datalog engines have

been developed by researchers from both academia and industry

with the expectation that SQL and other query languages will also

benefit from these advances. Based on which environment they

are deployed, these Datalog engines can be divided into two cate-

gories: shared-memory [16, 40, 52] and shared-nothing [41, 43, 46]

ones. These approaches implement the idea of parallel bottom-up

evaluation [21] by splitting the tables into disjoint partitions via

discriminating functions, such as hashing, where each partition is

then mapped to one of the parallel workers. After each iteration,

workers coordinate with each other to exchange newly generated

tuples when necessary. The final result is the union of contributions

by all workers. In this way, the entire computation can be divided

among all workers and operated in parallel.

Motivated by the emergence of modern commodity machines

withmassively parallel processors [6], previous studies have demon-

strated shared-memory multicore architectures yield superior per-

formance for Datalog applications. However, these studies either (i)

underutilize the multicore architecture due to poor parallelism [52];

or (ii) are based on different system architectures [16, 38, 40]. There-

fore, while these studies provide highly valuable techniques, mecha-

nisms and execution models, none of them fully exploits the knowl-

edge at hand to maximize parallel execution to the full extent de-

scribed in this paper.

DCDatalog

SociaLite[40]

RecStep[16]

DeALS-MC[52]

DDlog[37]

0 100 200 300 800 900

12

42

213

792

891

Time (s)

Figure 1: Query Performance of SSSP on LiveJournal Dataset

In this paper, we aim to propose Dynamic Coordinate Datalog
(DCDatalog), a parallel engine on shared-memory multicore ma-

chines to scale up Datalog evaluation. The key challenge in devising

a good plan for the parallel evaluation of recursive Datalog pro-

grams consists in providing an efficient mechanism to resolve race

https://doi.org/10.1145/3514221.3517853
https://doi.org/10.1145/3514221.3517853

conditions, as required to ensure the atomicity of concurrent update

operations. The state-of-the-art solution presented in [52] solves

this problem by (i) identifying a family of lock-free programs and

(ii) forcing global coordination after each iteration in the parallel

evaluation plan. The first issue of this approach is the limited range

of programs that are lock-free or can be turned into lock-free ones

by simple rules rewriting. As a result, this approach fails to support

more powerful applications, such as those that require aggregates in

recursion. Secondly, the above approach incurs costly coordination

overhead and poor scalability since the faster workers are forced to

wait idly until the slowest worker reaches the coordination point.

Witnessing this problem, we propose a new system architecture

that removes the limitation of both lock-free and decomposable

programs, thus boosting the parallel evaluation performance of

Datalog applications. We deal with race conditions by leveraging

a light-weight scheme that eliminates the need to perform global

coordination among workers. This is made possible by theDynamic

Weight-based Strategy (DWS) proposed in this paper. Instead of

blocking the faster workers, DWS reduces the straggler using effec-
tive local checkers controlled by a simple weight-based mechanism.

Since such weights are calculated on-the-fly, the workers can dy-

namically decide on whether to perform idle waiting or proceed to

the next iteration. This relaxation significantly reduces the overall

execution time and improves the parallelism of evaluation plans.

For example, Figure 1 clearly illustrates that, thanks to its better

coordination strategy, DCDatalog considerably outperforms its

competitors on the Single Source Shortest Path (SSSP) query.
To optimize the implementation of the above strategy, we devise

a suite of query planning techniques that map a Datalog program

to a family of specialized relational operators describing the behav-

ior of parallel executions. In this way, we can combine the query

optimization techniques of relational DBMS with our dynamic co-

ordination strategy in a shared-memory multicore environment.

Since computing aggregate-in-recursion represents the bottleneck

for many complex recursive queries, we also propose several opti-

mizations to accelerate this process.

The contributions of the paper can be summarized as follows:

1 We study the problem of improving the parallel Datalog

evaluation in shared-memory environments by proposing

a new coordination strategy as well as a prototype system.

Our DWS strategy (Section 4.2) significantly improves paral-

lelisms by eliminating the requirement of global coordination

among all workers.

2 We develop a Datalog engine DCDatalog in shared-memory

environments by implementing the DWS approach. To fur-

ther improve its performance, we also develop some opti-

mizations in query planning (Section 5) and system imple-

mentation (Section 6).

3 We conduct extensive experiments with five widely used re-

cursive Datalog programs on both synthetic and real world

datasets. The experimental results demonstrate that our DC-
Datalog engine provides across-board performance gain and

outperforms existing Datalog engines by one to two orders

of magnitude.

The rest of this paper is organized as follows: We provide the nec-

essary backgrounds in Section 2 and introduce the overall system

architecture in Section 3. We propose the dynamic coordination

strategy in Section 4. We present the query planning techniques

to implement above strategy in Section 5. We introduce the opti-

mizations for system implementation in Section 6. We show the

experimental results in Section 7. We survey the related work in

Section 8. Finally the conclusion is made in Section 9.

2 PRELIMINARY
2.1 Datalog
A Datalog program P consists of a finite set of rules operating on

sets of facts described by database-like schemas. A rule r has the
formh ← r1, r2, ..., rn , whereh is the head of rule, r1, r2, ..., rn is the

body and each comma separating atoms in the body represents the

logical conjunction (AND). The rule head h and each ri are atoms

having form p (t1, t2, ..., tk), where p is the predicate and t1, t2, ..., tk
are terms which can be variables or constants. On occasions, We

use the terms predicate, table and relation interchangeably. A rule

defines a logical implication: if all predicates in the body are true,

then so is the head h. There are two kinds of relations: (i) the base

tables are defined by tables in the EDB (extensional database) and

(ii) the derived tables are defined by the heads of rules and form the

IDB (intentional database). To further illustrate the key concepts

and terminology of Datalog consider the following program:

Query 1 - Transitive Closure (TC)
r1,1 : tc (X ,Y) ← arc (X ,Y)
r1,2 : tc (X ,Y) ← tc (X ,Z),arc (Z ,Y)

Query 1 derives the IDB relation tc from the EDB table arc rep-
resenting the edges of a graph. Since the predicate tc is contained
in both the head and body of rule r1,2, tc is a recursive table and
r1,2 is a recursive rule. tc is also the head predicate for r1,1 which is

non-recursive and therefore provides the base rule in the evaluation

of our query. Since at most one recursive predicate is included in the

body of any of its rule, Query 1 represents a case of linear recursion;
the term non-linear recursion denotes instead the case where some

rules contain multiple recursive goals.

The process of query evaluation first initializes tc using r1,1,
and then uses r1,2 to recursively produce new tc facts with join

operation between the table containing the tc atoms generated

in previous iterations with the arc relation. The mapping of the

head tables from the body tables can be described as an operator,

known as the Immediate Consequence Operator (ICO), that can

be expressed using relational algebra (RA). While non-recursive

queries can be implemented directly using the RA expression of

their ICO, the iterative procedure of Definition 2.1 is used to derive

the least solution of the fixpoint equation I = T (I) which defines

the formal semantics for the recursive queries expressed by positive
Datalog programs, i.e., programs without negation or aggregates.

Definition 2.1. For a program P with Immediate Consequence

Operator (ICO) T , the operational semantics of P is defined by

T ↑ω (∅) where: ω denotes the first infinite ordinal, T ↑0 (∅) = ∅ and
T ↑n+1 (∅) = T (T ↑n (∅)). Then T ↑ω (∅) denotes the union of T ↑n (∅)
for every n. A recursive program whose iteration converges to the

final value in a finite number of steps reaches its fixpoint at the

first integer n + 1, where T ↑n+1 (∅) = T ↑n (∅).

The fixpoint computation described above is then optimized

into the (SN) evaluation [3]. SN performs a differential fixpoint

computation of a Datalog program by first applying its base rules

and then applying a delta version of its recursive rules till the

fixpoint is reached. The core idea of SN is that the delta rules

will use delta relations, which contain the new atoms produced in

the previous iteration step, to avoid the duplicate generation of

previously generated atoms.

2.2 Parallel Evaluation of Datalog Programs
There are two kinds of parallel execution architectures: shared-

memory and shared-nothing. In this paper, we focus on the shared-

memory architecture, where both the base and recursive relations

are stored in the main memory that can be directly accessed by

all processors, as it is in fact the case for most modern multicore

machines. We will use the terms processor, thread and worker inter-

changeably if there is no ambiguity in the context. When different

processors visit the same memory cells, race conditions occur when

one or more of the processors performs a write operation. In this

case, a lock mechanism is required to ensure the atomicity of op-

erations. The examples of Datalog engines under this architecture

include DeALS-MC [52], Souffle [27] and RecStep [16]. On the

other hand, in a shared-nothing architecture, the data is distributed

into different computation nodes. The nodes in a cluster use the

message passing mechanism to exchange information with each

other via additional network communication. The examples in-

clude BigDatalog [43], Distributed SociaLite [41],Myria [46] and
MRA [49].

The state-of-the-art method for evaluating Datalog programs in

parallel is the substitution partitioned parallelization scheme [21].

This scheme first divides the workload into several disjoint parti-

tions using hash-based discrimination functions, and then assigns

each partition to exactly one worker. As the bottom-up SN evalu-

ation is performed by each worker on its assigned data, a worker

often needs to use records generated by other workers. Therefore, a

coordination across workers is required to manage their exchanges.

In this paper, we follow the approach used in previous studies and

assign partitions according to the join key of each table. Specifically,

we use the hash mechanism used in [52] to split the key range into

different partitions (as per the function H in Algorithm 1 shown

later). Thus the records of both base and recursive tables are allo-

cated into partitions according to the value of their join key. Note

that Issues of how to improve the performance of partition schemes

are beyond the scope of this paper.

In this paper, we will say that a local iteration is executed by a

worker when it finishes one iteration of SN evaluation, whereas

a global iteration is executed when all workers have finished the

same number of local iterations. When the delta table becomes

empty after a local iteration, then we will say that a local fixpoint
is reached, whereas the parallel evaluation terminates when the

global fixpoint is reached.

3 OVERALL FRAMEWORK
In this paper, we aim at developing a Datalog engine which, by

eliminating the requirement that programs must be lock-free, will

support a wide scope of applications or programs with superior

performance and scalability.

���������������

 !"!#�$��!����

%�$&�!#��#!''��

�(��&�!#��#!''��

��������

)*���"&�'�)'$&'�

�!�"&"&�'�+!'!$��

,���-&'!"��

�������������������

����������������� �����

����������

."��!$��%!���

+�"!-!"!�/�0'-�*�+!'!$��

 !"!�."��!$�

����������

�������

 ���!"�

#$"$

%&'(

 �!!"#�

����������

$�"�%!�%&!'�����&���

 !"!�1������0'"��2!��

�#!'�)*���"��

 �$)

*+�

,��"�

*+�

 ����������������

�!!"�!����������������

���������� ���������������

Figure 2: DCDatalog: The Overall Architecture

To archive better performance and scalability for our novel en-

gine, we propose a dynamic strategy DWS to control the coordina-

tion process during parallel execution. Instead of requiring workers

to request information from all others after a global iteration, each

worker just sends the newly generated delta table to the memory

space owned by other workers after its local iteration. In this way,

we eliminate the requirement of global coordination, and thus sig-

nificantly save the time of idle waiting. More details will be shown

in Section 4.2.

To efficiently implement DWS, we developed the prototype Dat-

alog system DCDatalog, with the overall architecture shown in

Figure 2. Apart from the classical and simple recursions,DCDatalog
could support programs containing queries with non-linear or mu-

tual recursions. One limitation is that it cannot support programs

with the negation in recursions, which is still an open problem yet.

Moreover, DCDatalog consists of the following components:

Query Processor The Query Processor provides the functional-

ity of analyzing and planning for the input Datalog programs. It

consists of three steps: (i) The Datalog Parser compiles the input

Datalog program and generates its Predicated Connected Graph

(PCG) [8], which is implemented with the data structure of AND/OR
Tree; (ii) The Logical Planner maps the PCG into relational oper-

ators to form the logical plan; (iii) The Physical Planner further
generates the physical plan to be executed in parallel. The details

will be illustrated in Section 5.

Execution Engine The Execution Engine aims at providing effi-

cient and scalable execution for the operators in the physical plan.

It consists of three components: Partition Manager, Coordinator
and Buffer and Message Controller. As detailed in Section 6, we use

light-weight atomic operations instead of locks to deal with race

conditions among workers, and various optimizations affecting

the computation of aggregates in recursion are also applied at this

point.

Storage Layer The Storage Layer provides the index and storage

functions for the base and recursive relations during the SN eval-

uation process. In this paper, we utilize the storage engine of the

DeALS system [44] enhanced with the B+-Tree index implemented

by ourselves following the idea of the previous studies [52]. Alter-

natively, other relational DBMSes could be also used as the storage

and index engines. Further improvements in this module are also

possible but beyond the scope of this paper.

4 DYNAMIC COORDINATION STRATEGY
In this section, we present the dynamic coordination strategy used

in the shared-memory multicore architecture. In Section 4.1 below,

we start with introducing existing mechanisms for parallel execu-

tion coordination. Then in Section 4.2, we propose our new DWS
strategy designed to optimize performance. Finally, in Section 4.3,

we discuss the support of more complex recursive queries.

4.1 Parallel Execution Mechanism
We first introduce how the SN evaluation has been parallelized in

previous studies such as [52] in Algorithm 1. In these studies, the

key range is split into disjoint partitions by a predefined hash func-

tion H (line 2). If there arem partitions P1, ..., Pm and n workers

W1, ...,Wn (m = n), all workers will run in parallel, each dealing

with its own partition. It is trivial to extend the proposed techniques

to the case wherem ≥ n To accelerate evaluation, a separate hash

index is built for each partition of the base relation (line 3). Then

all workers become active and execute the parallel computation of

SN as follows: each workerWi first initializes its recursive table

Ri according to the base rule (line 8) and build a B
+
-Tree index

on Ri (line 9). Next, a local iteration of semi-naive evaluation is

processed and the new delta relation δR′i is generated (line 11).

After all workers finish a global iteration, they coordinate with

each other by exchanging the newly generated tuples according to

H , before proceeding to the next iteration (line 13). At this point,

we also need to update indices on recursive tables and perform de-

duplication. Thus, If δR′i is empty, then the local fixpoint has been

reached, andWi is set to inactive (line 15). But if the δRi of some

inactive workerWi becomes non-empty after coordinating with

other workers, then the worker will become active again (line 17).

The parallel evaluation terminates when all workers become in-

active (line 19), denoting that the global fixpoint is reached. The

final result is equal to the union of recursive tables on all workers

(line 20).We refer to this simple approach described above asGlobal.

Query 2 Connected Component (CC)

r2,1 : cc2(Y ,min⟨Y ⟩) ← arc (Y , _).
r2,2 : cc2(Y ,min⟨Z ⟩) ← cc2(X ,Z),arc (X ,Y).
r2,3 : cc (Y ,min⟨Z ⟩) ← cc2(Y ,Z).

Example 4.1. We evaluate the CC program on the graph shown

in Figure 3(a). The execution process of Global (Algorithm 1) is

displayed in Figure 3(b)(1). The workersW2,W3 are slower thanW1

since they are associated with more edges. In the first global itera-

tion, workersW1,W2 andW3 take 5,8 and 8 time units, respectively.

Under Global, whenW1 finishes running, it is blocked as it waits

for other workers to finish the global iteration. OnceW2 andW3

have finished their work, they coordinate and exchange their newly

generated tuples with each other andW1. At that point,W2 and

W3 complete their connected component with vertex 4. Thus, they

realize it with vertex 1 after four global iterations. In conclusion,

Global takes a total of 128 time units.

We can see that in (Algorithm 1) idle waiting might happen be-

fore coordination (line 13). This is due to the requirement that all

workers should wait until the current global iteration is finished.

For complex queries that are not lock-free, coordination among all

workers can result in serious race conditions, which will involve

significant overhead. To address this problem, before presenting

DWS, we will first discuss a simple improvement that extends the

shared-nothing evaluation method recently proposed in [14]. This

method uses the Stale-Synchronous Parallel (SSP) model which

was previously proposed for distributed machine learning [11, 26].

The core idea of this approach is that the constraints now imposed

on local iterations can be relaxed as follows: Instead of waiting after
conducting just one local iteration, we allow all workers to continue
executing at most s local iterations before stopping to wait for the
current global iteration to be finished. Thus the intuition behind it

consists in having workers spend more time performing actual com-

putation rather than waiting for straddlers to finish. The benefits

can be maximized by carefully tuning the hyper-parameter s .

Example 4.2. Let’s look back to the previous example, assuming

that s = 1 in SSP. As depicted in Figure 3(b)(2),W1 is not blocked

byW2 andW3 in the first three local iterations as it can proceed one

iteration ahead of them under SSP. After that, due to the constraint
s = 1, W1 needs to wait until W2 and W3 finish their 2

nd
local

iteration. In this example, the coordination only takes one time unit

as it only requires the information dispatched by one worker. Thus

SSP finishes in 88 time units, about 40% faster than Global.

Furthermore, to alleviate the overhead brought by race condi-

tions, we can split the main memory space into units with finer

granularity: Each worker is associated with a memory segment

Mi to hold the delta relation newly generated by other workers

whose key falls in the range ofWi under H . The memory space

for storing newly generated tuples from workerWj is denoted as

Mj
i . In this way, when performing coordination among workers,

the race condition will happen just in a bufferMi rather than the

whole memory space. We further propose several optimizations

in the aspect of system implementation, which will be detailed in

Section 6.1.

4.2 The DWS Approach
Although SSP strategy is quite effective, limitations remain. In fact,

it is very difficult to set a proper value for s . Actually, as only one s
value will be used during the whole evaluation, it is unlikely that it

will remain the best for all workers during the whole SN evaluation.

Moreover, the approach still requires coordination after each global

iteration, causing additional overhead due to race conditions.

To address above concerns, we propose the Dynamic Weight-

based Strategy (DWS) to further improve coordination during par-

allel SN evaluation. InDWS, we eliminate the requirement of global

coordination, and instead, once a worker completes its local iter-

ation, we let it decide whether to proceed to the next iteration as

described next. During the evaluation by a workerWi , the eval-

uation time per iteration depends on the cardinality of its delta

table, and when this cardinality is small,Wi is likely to complete

�

!

"

#

$

%

&

�

��

�'

(

�������� ������� �������!

(a) A Toy Graph

�������� !"#$%&�'""(&��)*�"��

+,

+-

+.

+,

+-

+.

+,

+-

+.

/,012!"3)!

/-01445

/.016+4

(b) Global, SSP and DWS

Figure 3: Execution Time under Different Coordination Strategies

Algorithm 1: Parallel Evaluation (B, H)

Input: B: The base table, H : The hash function for partition

Output: R: All results in the recursive table

begin1

Split the key range into disjoint partitions with H ;2

Construct Index for the each partition of B on the partition3

key;

while True do4

foreach workerWi do5

// Run in parallel6

if In the first iteration then7

Initialize Ri and δRi with the base rule;8

Construct an index on Ri ;9

ifWi is active then10

Conduct one local iteration of evaluation with11

δRi and generate δR′i ;

// Wait until global iteration is finished12

Coordinate with all workers to update δRi13

according to H , update the index for Ri ;
if δRi = ∅ then14

MarkWi as inactive;15

else16

MarkWi as active;17

if All workers are inactive then18

Terminate the evaluation;19

return R as the union of all workers;20

end21

faster than other workers. In this case,Wi should wait and collect

more tuples from slower workers. Otherwise,Wi should allocate

the newly generated tuples to the message buffers Mi
j of other

workersWj (j , i) and move on to the next iteration. To imple-

ment this strategy, we need the following two parameters for each

worker i: the time τi thatWi should wait before proceeding to the

next iteration and a threshold ωi such thatWi will proceed to the

next iteration if the cardinality of delta table is larger than it. As

described later, the values of these parameters can be automatically

calculated at each iteration. Thus the need for manual tuning is

avoided and a better coordination could be achieved. Moreover, the

risk of race conditions on memory buffers will be reduced since

each worker updates its memory buffers with the delta atoms in an

asynchronous manner.

Algorithm 2 describes the behavior of DWS in each iteration. In

a way similar to Algorithm 1, it first initializes the recursive table

Ri and the delta table δRi from base rules. IfWi is active, it will

collect newly generated tuples from the memory bufferMj
i , remove

tuples already contained in Ri and merge the remaining tuples

into the delta table (line 4). Then the algorithm makes a decision

according to the cardinality of the newly generated delta table. If

the cardinality is smaller than ωi , the algorithm must wait at most

τi time units and collect more tuples from other workers before

continuing to computing δRi (line 6). Using the deadlock-avoidance
policy that is common in many systems,Wi resumes its processing

after a predefined timeout (line 8). If the cardinality is zero, then

the local fixpoint is reached andWi becomes inactive (line 10). Oth-

erwise, the evaluation proceeds to the next iteration by (i) updating

the two parameters with a weight-based mechanism (line 12), (ii)

performing one iteration of evaluation with the collected delta table

δRi (line 13), (iii) sending the tuples of newly generated delta table

δR′i to buffers of other workers and preparing for the next iteration
(line 14-17).

Example 4.3. As shown in Figure 3(b)(3),W1 is never blocked;

thus it can quickly propagate the connected component with vertex

1 to other workers. Besides reducing unnecessary computation in

SSP,W2 andW3 only need to wait a short while to obtain the newly

generated tuples produced byW1 in its second local iteration. As a

result of these improvements, DWS, with little additional waiting

time included, requires 67 time units: this is about half the time of

Global and represents a solid improvement over SSP.

Algorithm 2: Execution of DWS on workerWi

begin1

//Replace line 10 to 18 in Algorithm 1, all workers are2

active in the beginning

ifWi is active then3

δRi ← (∪jM
j
i − Ri) ∪ δRi ;4

while 0 < |δRi | < ωi do5

Wi waits for τi time and collect more tuples;6

ifWi is active due to timeout then7

break;8

if |δRi | = 0 then9

MakeWi as inactive;10

else11

Update ωi and τi ;12

Conduct one local iteration of evaluation with δRi ,13

generate δR′i ;

if ∃ tuple R ∈ δR′i associated withWj then14

Update Mi
j and makeWj as active;15

Ri ← Ri ∪ δRi ;16

Update the index for Ri , δRi ← ∅;17

end18

A remaining issue is to dynamically adjust the values of parame-

ters ωi and τi for each workerWi . To address this issue, we utilize

the Queueing Theory1 to model the behavior of each worker and

adjust such parameters on-the-fly from some basic statistics. The

Queueing Theory initially aims at studying the arrivals and depar-

tures of elements waiting in a queue. To represent such arrivals

and departures, Queueing Theory focuses on the mean arrival rate

λ, and the mean service rate µ. In the DWS process, tuples arrive

to the worker from message buffers Mi
j and wait in a queue for

workers to perform computation on them. For the problem at hand,

λ can be defined as the average frequency with which tuples arrive

at the worker, and µ can be defined as the reciprocal of the aver-

age computation time that a tuple spends on a worker
2
. Then the

variants for the arrival time and service time distributions will be

denoted as σ 2

a and σ 2

s , respectively.

Following this route, all message buffers Mj
i in worker i are

responsible for maintaining the arrival statistics λj and σa, j peri-
odically and incrementally from worker j. To update ωi and τi , we
first compute λ and σ 2

a for workerWi based on the queueing model

G/G/1 [10] that provides the following Equation (1):

λ =
(∑

j |M
j
i | · (λj)

−1∑
j |M

j
i |

)−1
; σ 2

a =

∑
j |M

j
i | ·
(
σ 2

a, j + (λj)
−2
)

∑
j |M

j
i |

− (λ)−2

(1)

Observe that each worker can easily maintain its µ and σ 2

s sta-

tistics. Then, the mean number of tuples in the queue Lq can be es-

timated with the Kingman’s formula [28] as shown in Equation (2),

which is known for its good accuracy and is widely used in real-life

applications. Thus, withC2

a = λ2 · σ 2

a ,C
2

s = µ2 · σ 2

s and ρ computed

1
https://en.wikipedia.org/wiki/Queueing_theory

2λi and µi can be different for different workersWi .

as λ/µ, we have:

Lq ≃
ρ2 (C2

a +C
2

s)

2(1 − ρ)
(2)

Having derived Lq , we can next estimate ωi as the expected

mean queue length Lq , given that Lq represents the most common

queue length when the queues are stable. Thus, in the best case

scenario, when none of the generated tuples is in Ri , it is feasible
for workers to wait and collect those tuples in the delta relation

δRi . Also, the τi can be estimated as Lq/λ = ωi/λ, which is also the

mean waiting time in the queue since λ is the arrival rate.

Finally, we canmake the following observation from a qualitative

analysis for our algorithms under certain simplified conditions, i.e.,

when one worker is slow due to unbalanced workloads:

Worst Case Analysis: When a program reaches the fixpoint,

the number of iterations run in the slowest worker of DWS is

no larger than that of Global. Specifically, if the slowest worker
receive a new tuple in iteration k in the Global approach, then the

slowest workers would have seen this new tuple before (or no after)

iteration k in DWS since other workers at least run k iterations.

Therefore, in DWS, the slowest worker could use fewer iterations

to reach the fixpoint. Considering that the overall running time of

the program is dominated by the time of the slowest worker, our

approach would work well in practice.

4.3 Support for Queries with Complex
Recursion

In this section, we show that our proposed techniques can also

supports Datalog programs with non-linear and mutual recursion.

As an example of non-linear recursion, let us consider Query 3
below, with multiple recursive tables path in the body of the rules:

Query 3 All Pairs Shortest Path (APSP)

r3,1 : path(A,B,min⟨D⟩) ← warc (A,B,D).
r3,2 : path(A,B,min⟨D⟩) ← path(A,C,D1),path(C,B,D2),

D = D1 + D2.

r3,3 : apsp (A,B,min⟨D⟩) ← path(A,B,D).

To deal with non-linear recursion in r3,2, we partition the first

recursive table path by attribute B and the second one by attribute

A. At this point, for each tuple (A,B,min⟨D⟩), we route it to and

replicate it in the two partitions H (A) and H (B). In this way, we

can successfully collect two parts of the table with same join keys

and then perform the join. This can be easily implemented by main-

taining two Ri tables and modifying line 13-14 in Algorithm 2 to

allocate each newly generated tuple to two partitions. In this pro-

cess, at most twice the number of tuples in table path are allocated

among workers in each iteration.

In the case of mutual recursion, we have that two or more

rules belonging to different predicates refer to each other (e.g.,

A ← B,B ← A). We will use Query 4 below to illustrate how our

techniques handle this situation.

Query 4 Who will attend the party (Attend)

r4,1 : attend (X) ← orдanizer (X).
r4,2 : cnt (Y , count⟨X ⟩) ← attend (X), f riend (Y ,X).
r4,3 : attend (X) ← cnt (X ,N),N ≥ 3.

The mutual recursion here involves tables attend and cnt. For
r4,2, once attend is obtained, it is joined with friend and the cnt
tuples so obtained are assigned to the corresponding partitions

specified by the group-by attribute Y . After deriving the aggregate

cnt, we apply the condition N ≥ 3 in r4,3 and obtain the new attend
table for next iterations. We just need to add this step in line 13 of

Algorithm 2.

5 QUERY PLANNING
Before query execution, the Query Processor compiles the Data-

log program into an AND/OR tree to identify the recursion, and

to translate it into a Logical Plan (Section 5.1). The Physical Plan
generated from this specifies how DWS is executed by a set of

physical operators. These operators are different from and comple-

ment those of relational DBMS, since here they also include parallel

execution primitives, such as coordinating with other threads and

accessing the memory buffer (Section 5.2).

5.1 Logical Plan

��
���������

��������
p

s
�� !��

 !" !"

��������
p

d�� !" !"
���������

Figure 4: Illustration of the Logical Plan: SG

As shown in the previous study [52], the bottom-up parallel

evaluation starts from the AND/OR tree of a Datalog program. To

further analyze and evaluate the program, the query processor first

maps the AND/OR tree into a logical plan. In our DCDatalog en-
gine, a logical plan is a Directed Acyclic Graph, where nodes denote

tables and relational operators, and edges denote the data flow. To

identify the recursive predicates in the program, we mark them

with special tags. The basic operators in our logical plan are similar

to those of relational DBMS: Projection, Join and Selection. For join

operators, their join keys are specified in the logical plan and will

be used for further processing to be discussed later. Figure 4 shows

the logical plan for Query 5. The left branch in Figure 4 displays the

logical plan of exit rules r5,1; the right branch displays the relational
operators implementing the recursive rule r5,2 at each iteration.

Query 5 Same Generation (SG)

r5,1 : sд(X ,Y) ← arc (P ,X),arc (P ,Y),X != Y .
r5,2 : sд(X ,Y) ← arc (A,X), sд(A,B),arc (B,Y).

In the process of logical planning, greedy optimization steps,

such as pushing down the selection operator to leaf nodes, are

applied automatically. Then, an optimization step that is specific

to parallel SN evaluation is applied by reordering the tables in the

body of recursive rules. For instance, assume that in the recursive

rule below P is a recursive table, and bi and ci denote different base
tables:

P(X1,X2, ...) ← b1,b2, ..., P (Y1,Y2, ...), c1, c2, ...

The standard left-to-right processing order will not be used for

this rule: instead we will always use the recursive relation as the

leftmost table in the join. Thus the above rule is reordered and

processed as:

P(X1,X2, ...) ← P(Y1,Y2, ...),b1,b2, ..., c1, c2, ...

The reason for this optimization is that the physical plan performs

a nested-loop-join without any further reordering, and by having

the recursive table in the outer-loop we can take advantage of the

indexes built on the base tables, as discussed in Section 5.2. For

example, in the logical plan for SG shown in Figure 4, we can see

that δsg is the first child of the join operator in the right subtree.

Thus, this optimization will exchange the positions of δsд and arc.

5.2 Physical Operators and Plan

���� !"#

$%���! #d����&!"#

����

 !"#$%���

&�'"%�()"$

*%�+$,"$%�� !_)

��� !"# !"#$%���

&�'"%�()"$

&

 !"

Figure 5: Illustration of Physical Plan: CC

Unlike in relational DBMS where the physical plan is directly

generated from a logical plan, the query processor of DCDatalog
involves the specification of additional for parallel execution ac-

tivities before the generation of physical plans. As a result, the

physical operators might be required to manage the coordination

among different workers. Next we describe the physical operators

as follows:

5.2.1 Join. In a Datalog program, the conjunctive queries are im-

plemented by the natural join operation. For recursive queries, we

only use binary join in the physical plan, and support multi-way

join by series of binary join operations. Indeed binary join opera-

tions involved in recursion can be supported very efficiently with

the help of tags specified in the logical plans.

As discussed in Section 4, we build a B
+
Tree index on the parti-

tion key of all relations. Thus we take advantage of such indices

to perform the joins, given that base relations remain unchanged

during the evaluation. Similarly to relational DBMS, the actual join

operation in DCDatalog will be either implemented as a hash join,

or as an index join, or as a nested-loop join. To select the best join

method, we use the following simple optimization heuristic that

has proven quite effective: when the recursive rules contain two

or more base tables with the same join keys, we perform a hash

join; otherwise, if the index is built on the join key, we perform

index join. If neither of these two methods is applicable, then a

nested-loop join is performed by default.

5.2.2 Gather. This operator, which is essential for parallel SN eval-

uation, is executed by each worker evaluating the branch specified

by lines 12 to 18 in Algorithm 2. Its functionality is to collect tuples

newly produced by other workers and update the index structure

on the recursive table. Then the delta table to be used in the next

iteration of SN is generated.

5.2.3 Distribute. The Distribute operator is called by a worker

when the join operation during a local iteration of the SN eval-

uation is completed. Specifically, the operator will split the join

results into disjoint partitions according to the same pre-defined

hash mechanism. Then the partitions are sent to the memory buffer

of different workers accordingly. In the process described by Al-

gorithm 2, Distribute is executed right before the application of

Gather.

For example, Figure 5 illustrates thee physical plan for Query 2
(Connected Component). The figure shows that the recursive table

cc2 is partitioned by its first attribute, and the base table arc should
construct an index on its first attribute due to the join key. The

dashed arrows here denote coordination among different workers,

which are controlled by the Distribute and Gather operators here.

Specifically, the Distribute operator distributes the results of SN

evaluation to other workers; while the Gather operator merges the

results into cc2 and generates δcc2 for each worker.

We next describe this physical plan in more details. First, the base

table arc is sent to the Distribute and Gather operators to initialize

the recursive table cc2 along with the delta table δcc2. Then δcc
will be joined with arc . In this example, an index join algorithm

is used since there is an index built on the join key. Next, the join

results are dispatched to different workers by the Distribute and

Gather operators. Then the Gather operator merges the aggregated

results into cc2 and generates the new deltas δcc2. This procedure
is repeated until the fixpoint is reached. Finally, table cc will be

taken directly from the recursive table cc2.
Aggregate operators, such as min or count, specified in the head

of rules can also be supported naturally in this framework, since

their implementation becomes part of the Gather operator, and

the Distribute operators also perform some partial aggregation to

expedite the overall evaluation.

6 SYSTEM IMPLEMENTATION AND
OPTIMIZATIONS

In this section, we propose several techniques to improve the over-

all performance. We will first discuss the system implementation

issues regarding parallel execution (Section 6.1) and then propose

various optimizations used for aggregates and the SN computation

(Section 6.2).

6.1 Implementation of Parallel Execution
In previous studies, the lock mechanism was used to deal with

race conditions occurring in some complex queries. Specifically,

when workerWi needs to update the buffer memory belonging

toWj (i , j), the operating system will apply a lock to protect

the complex information describing the critical section, and this

requires many system calls. As a result, the overall performance

will suffer from locks with coarse granularity and the degree of

parallelism can be significantly harmed.

HEAD

next

removed
valueCAS	head

value

TAIL

CAS tail

new	node

CAS next

Figure 6: SPSC queue operations

In DCDatalog, we address this issue by a light-weight data struc-
ture that dovetails with the DWS coordination strategy. As dis-

cussed in Section 4, DWS alleviates idle waiting by relaxing the

constraint of global coordination among workers. Next, we will

show that this strategy enables us to adopt a finer granularity mech-

anism that uses atomic operations instead of locks to handle race

conditions. During the parallel evaluation using DWS, a worker
Wi that wants to update the memory buffer ofWj only needs to

append information to the memory space Mi
j ; thenWj can collect

all contents fromMj in one operation. In the above process, the

race condition happens only between two workers. This enabled

us to design the Single Producer Single Consumer (SPSC) Queue

to implement it as a light-weight data structure. In fact, the SPSC

Queue is a ring array whose head and tail are maintained via atomic

operations. The detailed procedures are shown in Figure 6.

As discussed in Section 4, the parallel evaluation terminates

when the global fixpoint is reached. With the help of the SPSC

Queue, we can detect this event in an efficient way by checking

whether: (i) all workers are inactive; and (ii) all the memory buffers

Mi are empty. To validate (i), we maintain a global variable that

counts the number of inactive workers. To ensure that all buffers are

empty, we maintain one global variable to record the total number

of tuples that have been produced and sent into the buffer of all

workers; for each worker, we maintain a local variable to count the

number of tuples that have been processed by the worker. When

the global count is equal to the sum of local ones, then all tuples

have been processed and the buffers are empty.

6.2 Optimization Techniques
6.2.1 Improving Aggregates in Recursion. One of the most expen-

sive operations during the evaluation is computing aggregates in

d����

d����d����

d����

d����

d����

��������

 !"�

 !�d���

" !#$ %

&$'

� ���

&$'

Distribute

Gather

 !�d���

�������#

 !�d���

� ���

 !�d���

�������$

 !�d���

� ���

 !�d���

Figure 7: The Computation of Aggregates

recursion. The process of parallel computation of aggregates is

shown in Figure 7. It requires to first compute partial aggregate

results on each worker and then merge them with existing results.

In this process, a linear scan on the deduplicated recursive table of

each worker is required. To reduce the memory and computation

overhead in this process, we include essential information regard-

ing aggregates besides join keys in the index structure. Specifically,

for min and max aggregates, the key is the attribute on which the

aggregate is applied. For the aggregates count and sum, we instead
need to build two index structures: one on the group-by key, the

other on the attribute value that is incrementally being computed.

In this way, the aggregates can be computed by traversing the index

instead of conducting a linear scan on the workers.

Example 6.1. We use the example in Figure 7 to illustrate the

computation of aggregates in the CC program, whose physical plan

is displayed in Figure 5. After executing the Join and Project opera-

tors, the intermediate results for ΠY ,Z (δcc2(X ,Z) Z arc (X ,Y)) are
produced and split into different partitions (indigo square) based on

Y . The partial aggregation is calculated on each partition by sorting

the above intermediate results in ascending order based on Y and

Z . Then results of partial aggregation (violet square) are obtained

by keeping only the minimum Z for each Y and sent it to other

workers.

Once the worker finishes collecting the partial aggregated re-

sult δcc2’, the Gather operator merges such results into the recur-

sive relation and updates the index. Say that the partial results

δcc2’ collected from three workers for workerW1 are {[1, 2], [2, 4]},

{[1, 1], [2, 1]} and {[1, 2], [2, 3]}, respectively, and that the recursive

relation cc2 contains {[1, 4], [2, 3]} before merging. Then, we first

retrieve [1, 2] from the B+ tree index on cc2 and find the tuple [1, 4]
with same key 1 but a larger value 4. Thus, relation cc2 and its

index will be updated to {[1, 2], [2, 3]}. Meanwhile, we also add

[1, 2] into the delta relation. For tuple [2, 4], its value is larger than

that in cc2 ([2, 3]) and thus it will be ignored. We repeat the above

procedure, update cc2 along with its index and generate δcc2 for
the next iteration. In this way, the cost for calculating aggregation

can be reduced by looking up keys in the index.

For instance, to help compute min in CC (Query 2), we build

an index on table cc2 with Y as the key. To help compute sum in

PageRank (Query 6), we build two indices on table rank: The first

index is utilized to find and update the partial value, where ⟨X ,Y ⟩ is
the key andK is the value. The second index is utilized for updating

the aggregated value, whereX is the key and

∑
K onX is the value.

Query 6 PageRank (PR)

r6,1 : rank (X , sum⟨(X , I)⟩) ← matrix (X , _ , _),
I = (1 − α)/VNUM .

r6,2 : rank (X , sum⟨(Y ,K)⟩) ← rank (Y ,C),
matrix (Y ,X ,D),
K = α ∗ (C/D).

r6,3 : results (X ,V) ← rank (X ,V).

6.2.2 Using Cache to Optimize Existence Checking. At each itera-

tion of the SN evaluation, set union and set difference operations are

performed to update the recursive tables and the indices associated

with them. An essential operation that must be performed during

this process is checking whether a key exists in the recursive table,

which is realized by checking the B+ Tree index. Given a tuple in

the newly generated delta table, if its key is already presented in

the index, then we ignore the tuple. Otherwise, we will insert it

into the recursive table and the index. To reduce the overhead of

checking the indexes which requires logarithm time, we utilize an

additional cache structure for each worker. Then when checking

the tuples, we first look up the cache in constant time. If the key is

already there, we ignore the tuple; otherwise, we proceed to check

the index. Note that this cache structure does not involve much

memory overhead, especially for aggregates. Actually, the cache

only needs to maintain its group-by key and the corresponding

aggregations. That means we only need to keep an array of these

pairs, where, typically, their total number is just a small percentage

of the number of key values in the dataset.

7 EVALUATION
7.1 Experiment Setup

Table 1: Statistics of Datasets

Name # Vertices # Edges Size

Livejournal 4,847,572 68,993,773 527 MB

Orkut 3,072,441 117,185,083 895 MB

Arabic 22,744,080 639,999,458 4.8 GB

Twitter 41,652,231 1,468,365,182 11 GB

7.1.1 Benchmark Programs and Datasets. To evaluate our proposed
DCDatalog engine, we conduct experiments using five Datalog pro-

grams which were widely used in previous studies. The first two

are Same Generation (SG) (Query 5) and Delivery (Query 8) [1] that
were popular examples for deductive database; the other three

express the following popular graph algorithms: Connected Compo-
nent (Query 2), PageRank (Query 6) and Single Source Shortest Path
(Query 7).

Query 7 Single Source Shortest Path (SSSP)

r7,1 : sp (To,min⟨C⟩) ← To = start ,C = 0.

r7,2 : sp (To2,min⟨C⟩) ← sp (To1,C1),
warc (To1,To2,C2),
C = C1 +C2.

r7,3 : results (To,min⟨C⟩) ← sp (To,C).

Query 8 BoM – Delivery

r8,1 : delivery (P ,max⟨D⟩) ← basic (P ,D).
r8,2 : delivery (P ,max⟨D⟩) ← assbl (P , S),

delivery (S,D).
r8,3 : results (P ,max⟨D⟩) ← delivery (P ,D).

We evaluate all three graph queries on four real world datasets

Livejournal, Orkut, Arabic and Twitter, whose detailed statis-

tics are shown in Table 1.Moreover, we evaluate the first two queries

on the synthetic datasets used in previous studies [16, 24, 43]: Tree-

11 is a tree of height 11, where the degree of each non-leaf vertex

is a random number between 2 and 6. G-10K is a 10,000-vertex

random graph
3
generated by randomly connecting vertices so that

the probability that a pair of nodes is directly connected by an edge

is 0.001. The Rmat-n graphs are generated by the RMAT graph

generator, which has n vertices and 10 × n directed edges. The N-n
are trees with n vertices, which are generated in different levels

following [24]: each tree node has randomly 5 to 10 children, and

each child has a 20% to 60% chance of becoming a leaf.

7.1.2 Baseline Systems. We used the following Datalog engines

designed for shared-memory multicore architectures as the baseline

for our work: SociaLite [40], DeALS-MC [52], DDlog [37], Souf-
fle [38] equipped with the concurrent index [27] and RecStep [16].

For these systems, we obtained the source code of DeALS-MC
and SociaLite from the original authors, while the source code for

Souffle 4
, DDlog 5

, and RecStep 6
is publicly available.

The rationale for focusing on those Datalog systems, excluding a

few others from our comparisons, is based on the following consid-

erations. We exclude the shared-nothing based systems [43, 46, 49]

as they have different problem settings. It was shown in [52] that

the single-node based DeALS [44] and LogicBlox [7] cannot out-
perform DeALS-MC. Furthermore, we did not consider specialized

non-Datalog systems such as graph systems.

We use the end-to-end query execution time as the metric for

evaluation. Since in this paper we focus on in-memory computation,

we exclude the time of loading data from disk for all the systems

(which is rather trivial forDCDatalog). We run all the experiments 5

times and report the average results. If a system cannot finish within

10 hours under a particular setting, we regard that as timeout.

7.1.3 Environment. We implement the DCDatalog engine with

C++. We run the experiments of all the systems on a server with

four AMD Opteron 6376 CPUs (8 physical cores per CPU, 2 hyper-

thread per core), 256GB memory (configured into eight NUMA

regions) and 1 TB hard disk. The operating system is Ubuntu Linux

14.04 LTS and the compiler is GCC 9.0 with O3 flag.

7.2 End-to-end Query Time Comparison
The comparison with existing Datalog engines produces the results

shown in Table 2. For the two recursive queries SG and Delivery,
we find that DCDatalog achieves 3 to 100 times performance gain

over the baselines. For example, for the SG query on G-10K dataset,

the times for Souffle, RecStep, DeALS-MC, SociaLite and DDlog

3
http://www.cse.psu.edu/ kxm85/software/GTgraph

4
https://souffle-lang.github.io/

5
https://github.com/vmware/differential-datalog

6
https://github.com/Hacker0912/RecStep

are 194.09, 458.41, 76.18, 4762.25 and 285.78 seconds, respectively.

Meanwhile, DCDatalog takes only 15.95 seconds. The superior

performance of DCDatalog comes from the comprehensive opti-

mizations made in all components of the system. A separate issue

is that some of the language constructs of DCDatalog are not

supported in other systems. For instance, Souffle does not allow
aggregates in recursion, and thus it must use a stratified query that

results in very poor performance for the Delivery query. On the

other hand, the performance improvements achieved for DeALS-
MC must be credited directly to the efficient implementation of

DWS provided by DCDatalog which thus reduces idle waiting sig-

nificantly. The performance of SociaLite queries underscores that
the system was optimized for social network applications rather

than general-purpose Datalog queries. For RecStep, the source code
released by the author does not include the claimed PBME optimiza-

tions in [16]. Therefore, we just report the results we obtained from

their currently released version, which are likely to be worse than

those reported in the original paper. Also, DCDatalog significantly

outperforms DDlog, for a number of reasons including the fact that

the latter does not provide a good strategy for optimizing parallel

execution and also it does not optimize memory usage, whereby it

is prone to OOM problems.

If we now study the results produce by the three graph algo-

rithms CC, SSSP and PageRank, we detect trends that are similar

to those observed in the two recursive queries we just discussed.

Many baseline systems, such as DeALS-MC and RecStep, cannot
support PageRank because they do not allow the use of the sum
aggregate in recursion. Also, Souffle runs out of memory on all

graph queries because the equivalent stratified queries involve too

many intermediate results. Compared with other baseline systems,

DCDatalog has both great expressive power and performance be-

cause it relaxes the constraint on lock-free programs and uses a

light-weight scheme to deal with race conditions that often hap-

pen in during the evaluation of more complex programs that use

aggregates in recursion. For instance, for the SSSP query on Orkut

dataset, the times for RecStep, DeALS-MC, SociaLite and DDlog
are 88.01, 361.71, 36.84, 611.01 seconds, respectively; while that for

DCDatalog is 8.60 seconds.
In passing, we also report our findings on memory usage. For

instance, the peak memory usage of DCDatalog for CC query on

Livejournal, Orkut, Arabic, Twitter datasets is 2.50, 3.45, 17.68,

45.95 GB, respectively. In fact, the memory is just logically parti-

tioned across different workers, and thus the partitioned memory

is not exclusive to the worker itself physically. As a result, the

memory usage of DCDatalog is within a reasonable range.

We also conduct the additional experiment for Query 3 APSP,
which is a typical non-linear query. Here we ignore the comparisons

with DeALS-MC and RecStep since they do not support queries

with non-linear recursions, while Souffle runs out of memory for

the same reasons as those we previously discussed for other queries

with aggregates. From the results in Table 3, we see thatDCDatalog
still outperforms other systems under most settings. For example,

on the Rmat-256 dataset, the time for SociaLite and DDlog is, re-
spectively, 69.69 and 111.738 seconds while that of DCDatalog is
only 0.47 seconds. We believe that the main reason for such dra-

matic difference is that other systems typically broadcast the new

tuples in relation path to all other partitions, while DCDatalog

Table 2: Comparison with State-of-the-art Systems (seconds): OOM means out of memory; NS means the system does not
support the corresponding query; TO means timeout

Query Dataset DCDatalog SociaLite DeALS-MC Souffle RecStep DDlog

SG

Tree-11 40.37 30687.42 71.99 1438.98 OOM OOM

G-10K 15.95 4762.25 76.18 194.09 458.41 285.78

Rmat-10K 12.02 5013.76 80.11 143.46 512.48 184.57

Rmat-20K 54.33 21048.49 299.16 664.65 2378.16 728.15

Rmat-40K 231.56 TO 1358.42 2879.03 OOM OOM

Delivery

N-40M 3.27 233.71 NS 88.06 40.26 163.03

N-80M 5.07 854.73 NS 167.67 71.71 313.24

N-160M 11.01 2332.05 NS 369.81 154.13 741.26

N-300M 18.37 8170.65 NS 729.52 334.43 OOM

CC

Livejournal 8.44 31.70 319.88 OOM 55.12 556.90

Orkut 11.02 40.91 379.30 OOM 49.41 942.60

Arabic 50.31 184.55 OOM OOM 495.54 OOM

Twitter 77.22 TO OOM OOM 637.51 OOM

SSSP

Livejournal 11.82 42.36 791.83 OOM 212.50 891.49

Orkut 8.60 36.84 361.71 OOM 88.01 611.01

Arabic 9.83 61.69 OOM OOM 113.96 OOM

Twitter 23.79 TO OOM OOM 178.24 OOM

PageRank

Livejournal 112.29 12339.52 NS OOM NS 2295.93

Orkut 45.45 4770.41 NS OOM NS 1672.18

Arabic 202.81 TO NS OOM NS OOM

Twitter 2008.95 TO NS OOM NS OOM

 10
1

 10
2

 10
3

 10
4

 10
5

LiveJournal Orkut Arabic Twitter LiveJournal Orkut Arabic Twitter LiveJournal Orkut Arabic Twitter

CC SSSP PageRank

6
6 6
9

8
2
5

7
4
0

1
3
2

6
1 7
0

1
7
0

1
5
1
9

3
8
8

1
6
4
9

2
1
4
3
5

1
8 2
4

1
0
7 1
8
7

3
4

2
9

3
0

6
5

2
0
9

9
8

3
7
7

4
5
9
3

8 1
1

5
0 7

7

1
2

9 1
0

2
4

1
1
2

4
5

2
0
3

2
0
0
9

T
im

e
 (

s
)

Global SSP DWS

Figure 8: Effect of Different Coordination Strategies

Table 3: Results for the APSP Query

APSP DCDatalog SociaLite DDlog

Rmat-256 0.47 68.69 111.74

Rmat-512 1.35 2517.42 1560.47

Rmat-1K 5.99 OOM OOM

Rmat-2K 80.13 OOM OOM

Rmat-4K 317.02 OOM OOM

only needs to replicate and route newly generated tuples to two

partitions, thus reducing both communication and computation

costs. Moreover, the fact that the results of APSP nearly contain all

possible pairs of input vertices generate memory and computation

burdens for SociaLite and DDlog when broadcasting new tuples.

The other comprehensive optimization techniques of DCDatalog
are also contributing to its much better performance.

7.3 Results of Ablation Study

Table 4: Effect of Optimization Techniques

CC SSSP
w/o w/ w/o w/

Livejournal 16.11 8.44 29.50 11.82

Orkut 25.41 11.02 23.03 8.60

Arabic 105.64 50.31 18.32 9.83

Twitter 224.81 77.22 58.03 23.79

In this Section, we report the results of ablation studies conducted

to evaluate the effect of each proposed technique.

Parallel Coordination Strategy To test the effect of different

coordination strategies, we consider the following three methods:

Global is the method that requires a coordination after each global

iteration; SSP simply extends the techniques proposed in [11, 14]

which allows fast workers to proceed at most s iterations. Details of
above two methods have been covered in Section 4.1. DWS is our

proposed dynamic coordination strategy proposed in Section 4.2.

In this experiment, we set the value of s to 5 empirically, since this

produces the best performance under most settings. The results of

different coordination strategies are shown in Figure 8. We see that

DWS achieves the best performance under all settings. For example,

for the SSSP query on Livejournal dataset, the time forGlobal, SSP
and DWS is 131.68, 34.45 and 11.82 seconds, respectively. SSP per-

forms worse than DWS because it relies on a predefined threshold s
to avoid the idle waiting of faster workers, which fails to reflect the

characteristics of different iterations during the evaluation. Global
has the worst performance as it suffers from the idle waiting in-

volved in the parallel evaluation. Note that Global uses the same

coordination strategy as DeALS-MC but is equipped with the better

implementation techniques introduced in Section 6. Therefore, its

general performance is better than DeALS-MC due to the benefits

of our designs.

Effect of Optimizing Implementation Next, we evaluate the

optimizations proposed in Section 6.2 by eliminating the proposed

techniques(w/o optimization) and comparing with the fully opti-

mized DCDatalog engine (w/ optimization). Due to space limita-

tions, we only report the results of CC and SSSP here. We observe

from Table 4 that a 1.86 to 2.91 times performance gain was achieved

by applying the optimizations. This result confirms the merits of the

proposed coordination strategy and implementation features which

enabled DCDatalog to achieve top state-of-the-art performance.

7.4 Scalability

0

4

8

12

16

20

1 2 4 8 16 32 64

S
p
e

e
d

U
p

of Threads

CC
SSSP

Delivery

(a) Varying # Threads

2
3

2
4

2
5

2
6

2
7

10 20 40 80 160

T
im

e
 (

s
)

of Vertexes (10
6
)

CC
SSSP

Delivery

(b) Varying Data Size

Figure 9: Scalability
We first conduct experiments on scaling-up the number of work-

ers (threads). We vary the number of threads from 1 to 64 and

evaluate the CC, SSSP and Delivery programs on datasets Livejour-

nal, Arabic, and N-300M. The results are shown in Figure 9(a). We

observe that DCDatalog scales well using up to 32 threads. After

that, the speedup tends to stabilize because the number of physical

cores on the machine is 32 and they are fully utilized. The SSSP
query achieves smaller speedups since its evaluation starts from

one vertex and the speed-ups of parallelism materialize only after

many vertices are reached.

Finally we increase the dataset size and observe how our system

scales over large volumes of data. Our synthetic graph datasets

Rmat-n have size ranging from 10M to 160M obtained by varying

the number of vertices in the graph. Figure 9(b) shows the results

of CC, SSSP and Delivery programs. We observe that the time in-

creases proportionally to the size of the dataset. For example, the

execution time of CC is 12.39, 27.08, 47.76, 96.61, 158.82 seconds

on the synthetic graph with 10M, 20M, 40M, 80M, 160M vertices,

respectively. These results suggest that DCDatalog can potentially

deal with ever larger datasets on modern multicore machines.

8 RELATEDWORK
8.1 Datalog Language and Evaluation
Supporting aggregates in recursive Datalog programs is an old

and difficult problem which has been the topic of much previous

research work. Earlier studies tried to reach this goal by providing

formal semantics for recursive Datalog programs with unstratified

aggregates [17, 18, 34]. In particular, Ross et al. [36] used semantics

based on specialized lattices to express the four aggregates, while

Ganguly et al. [19] sought to optimize programs with extrema.

Mazuran et al. [32] proposed the monotonic aggregates and proved

that they can be used freely in recursion. More recently, Zaniolo

et al. [55] introduced the Pre-mappability(PreM) and PCC [54]

properties under which programs using aggregates in recursion are

equivalent to those aggregate-stratified ones. This led to the design

and implementation of RaSQL, an extension of SQL that supports

extrema aggregates in recursion [24, 48].

There is a long stream of studies about supporting parallel eval-

uation of recursive Datalog programs. Wolfson et al. [50] identified

the decomposable programs which can be evaluated in parallel

without communication and duplicated computation. The parallel

SN evaluation fixpoint was proposed in [20] for message passing.

Seib et al. [39] provided the Generalized Pivoting to distribute the

workload of a Datalog program for parallel execution and Gan-

guly et al. [21] proposed the substitution partitioned parallelization

scheme. Shaw et al. [42] and Afrati et al. [4, 5] studied how to

support Datalog evaluation under MapReduce. Motik et al. [33]

focused on the specific problem of RDF data. All above studies fo-

cused on interesting theoretical results rather than concrete system

implementations.

8.2 Datalog Systems and Applications
Many efforts focused on designing and implementing efficient en-

gines for Datalog evaluation. LogicBlox [7] designed the Datalog

engine using ideas and techniques inspired by relational DBMS.

DeALS [44] implemented the idea of monotonic aggregation to

efficiently support aggregates in recursion. There are also various

special-purpose systems that use Datalog-like interfaces due their

ability of expressing succinctly a wide spectrum of applications,

such as knowledge reasoning [9], data mining [29], machine learn-

ing [47] and data center management [56].

To deal with large-scale analytical queries, another major line

of studies focuses on Datalog engines in shared-nothing environ-

ment. For instance, Distributed SociaLite [41] extended its single

node version [40] to distributed setting with message passing to

communicate. Myria [46] proposed an asynchronous approach for

Datalog evaluation. BigDatalog [43] developed the Datalog engine

on top of Apache Spark. MRA [49] proposed program analysis and

query engine for synchronization in distributed environment.

Among shared-memory systems, DeALS-MC [52] implements

and optimizes the idea of substitution partitioned parallelization for

lock-free programs. However, it has certain limitations of perfor-

mance due to its coordination strategy, which has been detailed

in Section 2.2. Souffle [27, 38] is a Datalog engine designed with

concurrent B-Tree indexes. It does not support aggregates in recur-

sion and thus cannot express many advanced analytical queries.

RecStep [16] is a parallel Datalog engine implemented on top a

parallel relational database system namedQuickStep [35], which is

responsible to support the parallel execution of Datalog programs.

The RecStep engine itself did not propose techniques for improving

the parallel evaluation which is the focus of this paper.

8.3 Parallel Query Evaluation
In the past years, many distributed big data platforms have been

developed to cope with the ever-increasing volume of data collec-

tions. For distributed big data platforms, a critical bottleneck is the

synchronization mechanism over all workers. The Bulk Synchro-

nous Parallel (BSP) model is the most popular one for distributed

computation. Under BSP, iterative computation is separated into

super steps, and messages from one super step are only accessible

in the step that immediately follows it. It has been adopted by both

general purpose systems like Apache Spark [53] and graph process-

ing systems, such as Pregel [31] and GraphX [23]. BSP has been

adopted by both general purpose systems like Apache Spark [53]

and graph processing systems, such as Pregel [31] and GraphX [23].

To alleviate the overhead of synchronization of BSP, other systems,

including GraphLab [22] and Giraph++ [45], adopted the Asynchro-

nous Processing (AP) model. Some follow-up studies [11, 15, 25, 51]

investigated trade-offs between AP and BSP and proposed new syn-

chronization techniques, which can reduce both the cost of global

synchronization and communication overheads. All above strate-

gies are designed for applications of graph analysis or machine

learning in the shared-nothing environment, which is not the focus

of our study. Investigating possible extensions of these techniques

to our problem represents an interesting direction for future work.

9 CONCLUSION
In this paper, we introduce DCDatalog, a parallel Datalog engine
for shared-memory multicore architectures.DCDatalog is equipped
with a light-weight scheme to resolve race conditions in parallel

execution, thus enabling more efficient evaluation for a broad range

of Datalog applications. We propose a novel dynamic coordination

strategy to overcome the limitations of existing approaches for

parallel Datalog evaluation. The proposed strategy significantly

reduces the idle waiting time and brings additional benefits to recur-

sive queries. Furthermore, we proposed and implemented several

query planning and optimization techniques to improve the per-

formance of recursive Datalog programs. Experimental results on

several real datasets demonstrate the superior efficiency and scala-

bility of DCDatalog compared with other alternatives. For the fu-

ture work, we will investigate how SQL and other query languages

supporting recursion could also benefit from these advances.

REFERENCES
[1] [n.d.]. Recursion Example: Bill Of Materials. https://www.ibm.com/

support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.sql.ref.doc/doc/

r0059242.html.

[2] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016.

EmptyHeaded: A Relational Engine for Graph Processing. In SIGMOD. 431–446.
[3] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.

[4] Foto N. Afrati, Vinayak R. Borkar, Michael J. Carey, Neoklis Polyzotis, and Jef-

frey D. Ullman. 2011. Map-reduce extensions and recursive queries. In EDBT.
1–8.

[5] Foto N. Afrati and Jeffrey D. Ullman. 2012. Transitive closure and recursive

Datalog implemented on clusters. In EDBT. 132–143.
[6] Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan, Orion Hodson,

and Antony I. T. Rowstron. 2013. Scale-up vs scale-out for Hadoop: time to

rethink?. In SOCC. 20:1–20:13.
[7] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and

Implementation of the LogicBlox System. In SIGMOD. 1371–1382.
[8] Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo. 2003.

The Deductive Database System LDL++. TPLP 3, 1 (2003), 61–94.

[9] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog

System: Datalog-based Reasoning for Knowledge Graphs. PVLDB 11, 9 (2018),

975–987.

[10] Robert B Cooper. 1981. Queueing theory. In Proceedings of the ACM’81 conference.
119–122.

[11] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu

Kumar, Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B. Gibbons, Garth A.

Gibson, and Eric P. Xing. 2014. Exploiting Bounded Staleness to Speed Up Big

Data Analytics. In USENIX ATC. 37–48.
[12] Adnan Darwiche. 2020. Three Modern Roles for Logic in AI. In PODS. 229–243.
[13] Ariyam Das, Youfu Li, Jin Wang, Mingda Li, and Carlo Zaniolo. 2019. BigData Ap-

plications fromGraph Analytics to Machine Learning by Aggregates in Recursion.

In ICLP. 273–279.
[14] Ariyam Das and Carlo Zaniolo. 2019. A Case for Stale Synchronous Distributed

Model for Declarative Recursive Computation. TPLP 19, 5-6 (2019), 1056–1072.

[15] Wenfei Fan, Ping Lu, Xiaojian Luo, Jingbo Xu, Qiang Yin, Wenyuan Yu, and

Ruiqi Xu. 2018. Adaptive Asynchronous Parallelization of Graph Algorithms. In

SIGMOD. 1141–1156.
[16] Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, AwsAlbarghouthi, Paraschos Koutris, and

Jignesh M. Patel. 2019. Scaling-Up In-Memory Datalog Processing: Observations

and Techniques. PVLDB 12, 6 (2019), 695–708.

[17] Filippo Furfaro, Sergio Greco, Sumit Ganguly, and Carlo Zaniolo. 2002. Pushing

extrema aggregates to optimize logic queries. Inf. Syst. 27, 5 (2002), 321–343.
[18] Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. 1991. Minimum and Maximum

Predicates in Logic Programming. In PODS. 154–163.
[19] Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. 1995. Extrema Predicates in

Deductive Databases. J. Comput. Syst. Sci. 51, 2 (1995), 244–259.
[20] Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. 1990. A Framework for

the Parallel Processing of Datalog Queries. In SIGMOD. 143–152.
[21] Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. 1992. Parallel Bottom-Up

Processing of Datalog Queries. J. Log. Program. 14, 1&2 (1992), 101–126.
[22] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.

In OSDI. 17–30.
[23] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.

Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed

Dataflow Framework. In OSDI. 599–613.
[24] Jiaqi Gu, Yugo Watanabe, William Mazza, Alexander Shkapsky, Mohan Yang,

Ling Ding, and Carlo Zaniolo. 2019. RaSQL: Greater Power and Performance

for Big Data Analytics with Recursive-aggregate-SQL on Spark. In SIGMOD.
467–484.

[25] Minyang Han and Khuzaima Daudjee. 2015. Giraph Unchained: Barrierless Asyn-

chronous Parallel Execution in Pregel-like Graph Processing Systems. PVLDB 8,

9 (2015), 950–961.

[26] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B.

Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing. 2013. More

Effective Distributed ML via a Stale Synchronous Parallel Parameter Server. In

NIPS. 1223–1231.
[27] Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2019. A spe-

cialized B-tree for concurrent datalog evaluation. In PPoPP. 327–339.
[28] J. F. C. Kingman. 1961. The single server queue in heavy traffic. Mathematical

Proceedings of the Cambridge Philosophical Society 57, 4 (1961), 902–904.

[29] Youfu Li, Jin Wang, Mingda Li, Ariyam Das, Jiaqi Gu, and Carlo Zaniolo. 2021.

KDDLog: Performance and Scalability in Knowledge Discovery by Declarative

Queries with Aggregates. In ICDE. 1260–1271.
[30] Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

Stoica. 2006. Declarative networking: language, execution and optimization. In

SIGMOD. 97–108.

https://www.ibm.com/
support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.sql.ref.doc/doc/r0059242.html
support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.sql.ref.doc/doc/r0059242.html

[31] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale

graph processing. In SIGMOD. 135–146.
[32] Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. 2013. Extending the power

of datalog recursion. VLDB J. 22, 4 (2013), 471–493.
[33] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. 2014.

Parallel Materialisation of Datalog Programs in Centralised, Main-Memory RDF

Systems. In AAAI. 129–137.
[34] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. 1990. The

Magic of Duplicates and Aggregates. In VLDB. 264–277.
[35] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,

Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. 2018. Quickstep: A

Data Platform Based on the Scaling-Up Approach. PVLDB 11, 6 (2018), 663–676.

[36] Kenneth A. Ross and Yehoshua Sagiv. 1992. Monotonic Aggregation in Deductive

Databases. In PODS. 114–126.
[37] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. In LPNMR, Vol. 2368.

56–67.

[38] Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. 2016. On

fast large-scale program analysis in Datalog. In CC. 196–206.
[39] Jürgen Seib and Georg Lausen. 1991. Parallelizing Datalog Programs by General-

ized Pivoting. In PODS. 241–251.
[40] Jiwon Seo, Stephen Guo, and Monica S. Lam. 2013. SociaLite: Datalog extensions

for efficient social network analysis. In ICDE. 278–289.
[41] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. 2013. Distributed

SociaLite: A Datalog-Based Language for Large-Scale Graph Analysis. PVLDB 6,

14 (2013), 1906–1917.

[42] Marianne Shaw, Paraschos Koutris, Bill Howe, and Dan Suciu. 2012. Optimizing

Large-Scale Semi-Naïve Datalog Evaluation in Hadoop. In Datalog in Academia
and Industry. 165–176.

[43] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,

and Carlo Zaniolo. 2016. Big Data Analytics with Datalog Queries on Spark. In

SIGMOD. 1135–1149.
[44] Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. 2015. Optimizing recursive

queries with monotonic aggregates in DeALS. In ICDE. 867–878.
[45] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,

and John McPherson. 2013. From "Think Like a Vertex" to "Think Like a Graph".

PVLDB 7, 3 (2013), 193–204.

[46] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. 2015. Asynchronous

and Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing Engines.

PVLDB 8, 12 (2015), 1542–1553.

[47] Jin Wang, Jiacheng Wu, Mingda Li, Jiaqi Gu, Ariyam Das, and Carlo Zaniolo.

2021. Formal semantics and high performance in declarative machine learning

using Datalog. VLDB J. 30, 5 (2021), 859–881.
[48] Jin Wang, Guorui Xiao, Jiaqi Gu, Jiacheng Wu, and Carlo Zaniolo. 2020. RASQL:

A Powerful Language and its System for Big Data Applications. In SIGMOD.
2673–2676.

[49] Qiange Wang, Yanfeng Zhang, Hao Wang, Liang Geng, Rubao Lee, Xiaodong

Zhang, and Ge Yu. 2020. Automating Incremental and Asynchronous Evaluation

for Recursive Aggregate Data Processing. In SIGMOD. 2439–2454.
[50] Ouri Wolfson and Abraham Silberschatz. 1988. Distributed Processing of Logic

Programs. In SIGMOD. 329–336.
[51] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. 2015.

SYNC or ASYNC: time to fuse for distributed graph-parallel computation. In

PPoPP. 194–204.
[52] Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. 2017. Scaling up the

performance of more powerful Datalog systems on multicore machines. VLDB J.
26, 2 (2017), 229–248.

[53] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing. In NSDI. 15–28.
[54] Carlo Zaniolo, Ariyam Das, Jiaqi Gu, Youfu Li, Mingda Li, and Jin Wang. 2019.

Monotonic Properties of Completed Aggregates in Recursive Queries. CoRR
abs/1910.08888 (2019).

[55] Carlo Zaniolo, Mohan Yang, Ariyam Das, Alexander Shkapsky, Tyson Condie,

and Matteo Interlandi. 2017. Fixpoint semantics and optimization of recursive

Datalog programs with aggregates. TPLP 17, 5-6 (2017), 1048–1065.

[56] Qizhen Zhang, Akash Acharya, Hongzhi Chen, Simran Arora, Ang Chen, Vincent

Liu, and Boon Thau Loo. 2019. Optimizing Declarative Graph Queries at Large

Scale. In SIGMOD. 1411–1428.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Datalog
	2.2 Parallel Evaluation of Datalog Programs

	3 Overall Framework
	4 Dynamic Coordination Strategy
	4.1 Parallel Execution Mechanism
	4.2 The DWS Approach
	4.3 Support for Queries with Complex Recursion

	5 Query Planning
	5.1 Logical Plan
	5.2 Physical Operators and Plan

	6 System Implementation and Optimizations
	6.1 Implementation of Parallel Execution
	6.2 Optimization Techniques

	7 Evaluation
	7.1 Experiment Setup
	7.2 End-to-end Query Time Comparison
	7.3 Results of Ablation Study
	7.4 Scalability

	8 Related Work
	8.1 Datalog Language and Evaluation
	8.2 Datalog Systems and Applications
	8.3 Parallel Query Evaluation

	9 Conclusion
	References

