
pLSM: A Highly Efficient LSM-Tree Index Supporting Real-Time Big Data
Analysis

Jin Wang, Yong Zhang, Yang Gao, Chunxiao Xing
Research Institute of Information Technology

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

{wangjin12, yang-gao10}@mails.tsinghua.edu.cn, {zhangyong05,xingcx}@tsinghua.edu.cn

 Abstract—Big Data boosts the development of data
management and analysis in database systems but it also poses
a challenge to traditional database. NoSQL databases are
provided to deal with the new challenges brought by Big Data
because of its high performance, storage, scalability and
availability. In NoSQL databases, it is an essential
requirement to provide scalable and efficient index services
for real-time data analysis. Most existing index solutions focus
on improving write throughput, but at the cost of poor read
performance. We designed a new plug-in system PuntStore
with pLSM (Punt Log Structured Merge Tree) index engine.
To improve read performance, Cache Oblivious Look-ahead
Array (COLA) is adopted in our design. We also presented a
novel compact algorithm in bulk deletion to support migration
of data from temporary storage to data warehouse for further
analysis.

Keywords--Big Data; index; Log Structured Merge Tree; Cache
Oblivious; bulk deletion; write performance

I. INTRODUCTION

In the process of informatization, the amount of data has
been increasing at a high speed for both individuals and
organizations. Data has played a significant role in every
industry and business function field, bringing us into the
era of data. Therefore such problems brought by “Big Data”
have been a common concern of the field. The
requirements for Big Data management and analysis are
widely different from those of traditional data management.
Huge data volumes need to be kept online for querying and
analyzing. In addition, queries need to be answered
immediately to enable real-time analysis and decision
making.

To tackle such problems, we designed a plug-in system
called PuntStore. PuntStore makes optimization in storage,
distribution, scalability, heterogeneity and security. To
satisfy the needs for temporary storage and make real-time
analysis, we designed a non-relational database PuntDB.
Just like the SAP HANA database [2], PuntDB provides the
foundation for other high-level applications in PuntStore.
To support real-time data analysis well, index service in
PuntDB must be able to deal with large-scale, complex data
and provide immediate availability of operational data. A
highly efficient index could improve the speed of data
retrieval.

We must organize an index into a particular kind of data
structure in order to make use of it. B-Tree is a general type
of data structure to support index in relational databases.
However, B-Tree has a problem of aging and suffers from
disk-seek bottlenecks when faced with large volume of data
[10]. Generally speaking, the analysis of Big Data relies on
a storage type for analytical workloads. The analytical
workloads emphasize write throughput and sequential reads
over random access. Thus a data structure supporting better
write performance is needed.

The Log Structured Merge Tree (LSM-Tree) is a general
model to reach write optimization [9]. But LSM-Trees
tradeoff read performance for improving write throughput.
Cache Oblivious Streaming B-Tree is a dictionary that
implements efficiently insertions and range queries [5]. A
widely used kind of Cache Oblivious Streaming B-Tree is
Cache Oblivious Look-ahead Array (COLA). It enables the
logically contiguous elements to be stored in the same
block instead of scattered on disk. Therefore the seek time
will be much shorter. However, COLA can’t make good
use of memory as buffer. Moreover, it doesn’t support
efficient deletion. Thus, we design a new index Punt LSM
(pLSM) which could satisfy the needs for performing index
probes in write optimized systems.

In the following sections, we will discuss the specific
implementation of pLSM index. Section 2 provides the
necessary background of our pLSM structure. Section 3 is
an overview of the index structures with the similar goal of
our pLSM. Section 4 describes our design of pLSM in
detail. We also presented a new compact algorithm to solve
the problem of deletion for COLA. We offered the analysis
of advantages of pLSM in bulk deletion. Section 5 is about
the testing of our design of pLSM, showing how it
outperformed B-Tree and the original LSM-Tree on
different kinds of workloads.

II. BACKGROUND
Nowadays, traditional magnetic disk still acts as the

main storage media, so the performance of storage system
is decided by hard disk seek time. Storage capacity per
disk will continue to grow quickly, but it seems that seek
time will change slowly. To make full use of the
bandwidth and cope with random I/O, proper data
structures for external memory are needed such as index
for highly efficient query and inserting.

2013 IEEE 37th Annual Computer Software and Applications Conference

0730-3157/13 $26.00 © 2013 IEEE

DOI 10.1109/COMPSAC.2013.40

240

A. B-Tree
B-Tree is a balanced search tree structure designed for

external memory [4]. A large number of precious work
shows that B-Tree provides optimal random reads.
However, when a large number of elements are added into
the tree, the external memory will become fragmentized
and more random I/Os will occur, which will lead to long
seek time. In order to improve write performance, a write-
optimized structure is needed.
B. LSM-Tree

A LSM-Tree is an index that consists of one smallest
component in memory and several larger B-Tree
components on disk [9]. Figure 1 shows the structure of a
typical LSM-Tree. The in-memory component is defined as
C0 and could be updated in place. The newest data is
inserted into C0. After C0 is full, it is merged with the next
smallest component C1. Other components on disk increase
in size exponentially to ensure that the merge cost is
minimized.

The fundamental mechanism of LSM-Tree is to defer the
process of putting index changes into disk and deal with the
write operation in batch. By streaming data in and flushing
it back to disk as one streaming operation, we can amortize
the disk I/O cost. Moreover, since all components on disk
are produced by merging with the next smaller component,
LSM-Tree is updated by eliminating random I/O. However,
the scan operations in LSM-Tree were not as efficient as
those in B-Tree.
C. Cache-Oblivious Data Structure

The B-Tree mentioned above is typically analyzed in the
Disk Access Machine model. This model makes an
assumption that the memory of size M is organized into
blocks of size B and the external memory is arbitrarily
large. Within the DAM model, searching is optimal and
insertion costs O(���� �) block transfers.

Within the Cache Oblivious model by M.Frigo [5], the
block size B is unknown to the algorithm so that any
memory-specific parameterization could be avoided. Of the
extant cache oblivious structures, the most widely
mentioned is Cache Oblivious Look-ahead Array (COLA),
which supports insertion of N elements in O(��� �/B) block
transfers and searches in O(��� �) transfers [6]. Moreover,
the COLA consists of ���� � arrays, each of which is either
completely full or completely empty. Each full array is
sorted so that we can use binary search to accelerate
searching in one array. The kth array is of size �	 and

arrays are stored in contiguously in memory. An example
of COLA is shown in Figure 2. When an element is
inserted into a full array, the array will be merged into the
next array until all the elements are contained in full arrays.

III. RELATED WORK
Although original LSM-Tree could improve write

performance by eliminating random I/O, it scarifies read
performance since in the worst case it involves a maximum
of n I/Os (n is the number of components on hard disk) as
each component of the tree needs to be checked. Besides, it
also brings long write latency because of the asynchronous
merge procedure between different components on disk.

The bLSM-Tree designed by Sears is a new LSM-Tree
variant [3]. It improves excessive read amplification by
protecting C1, C2…CN tree component with Bloom Filters.
This method could efficiently reduce query time when the
element doesn’t exist. In order to eliminate long write
pauses and provide optimal write performance, bLSM-Tree
implements a mechanism called spring and gear schedule
to replace the traditional partition schedule [7] and ensure
the completion of merge processes at the same time. The
primary limitation of bLSM is that the time of merging
process is bound with the timing insertions into C0. To
avoid blocking caused by this bound, we must halve the
size of memory. Besides, we need to estimate the costs of
future merge in order to apply this approach. This is not
always possible in real-time systems.

Similar work has been done to improve read
performance. TokuDB is a store engine for MySQL[1]. It
uses an efficient index to speed up query and attain high
scalability. By leveraging write-optimized compression,
TokuDB achieves up to a 90% reduction in HDD and flash
storage requirements, without impacting performance [10].
Fractal Tree Index implemented by TokuDB is an efficient
solution to improve writes performance with less tradeoff
on read performance. It could run 10 to 100 times faster
inserts than B-Tree. Although the query time for Fractal
Tree is theoretically no better than B-Tree, it in fact
performs much better since Random I/Os are avoided.
However, many problems remain to be solved by TokuDB.
For instance, TokuDB can’t support efficient deletion and
updating. And its record’s size shouldn’t be too large, so

Figure 1. A general structure of LSM-Tree

Figure 2. An example of Cache Oblivious Look-ahead Array

241

TokuDB can’t be used to store BLOB (Binary Large
Object).

IV. THE IMPLEMENTATION OF PLSM
As mentioned in the previous section, it is crucial to

ensure lookup and scan performance while seeking for
write optimization. To attain that goal, we present a new
LSM-Tree variant pLSM to address the limitation of LSM-
Tree mentioned above. Just like the bLSM implementation
is based upon Rose, a column-compressed, log-structured
replication [8], we base pLSM on our PuntStore system.
We implemented Skip List as the in-memory component
for pLSM, which has a fast insertion and can improve the
speed of random access indexed lookups. For components
on disk, we implements Cache Oblivious Look-ahead
Arrays to overcome the shortcomings of “aging” in B-Trees.
To fulfill the task of bulk deletion, we design a new
compact algorithm to make full use of disk space.

A. The Design of PuntDB
PuntDB is an optimized NoSQL database to support the

storage and analysis of Big Data. PuntDB provides the
high-performance data storage and processing engine
within Punt Store. Originally, PuntDB uses B-Tree as its
index structure. However, B-Tree index doesn’t perform
well in the task of wireless sensor network for data
collection. When large volume of data swarms into the
database at a high speed, the B-Tree index can’t perform so
well as to support real-time insertion and query as expected
before.

The reason is the “aging” problem of B-Tree. As we
know, the B-Tree performance is disk-bandwidth limited.
High entropy insertion in B-Tree has a poor data locality,
thus causing more random I/O. This also happens in the
case of range query. In a new-built B-Tree, range queries
have good locality since leaf nodes are laid out sequentially
on disk during this period. But when B-Tree becomes aged,
the leaf blocks are scattered across the disk because the
usage of bandwidth will drop to as little as 1%.[10] To
avoid aging and eliminate random I/O, we designed pLSM
index instead of B-Tree to support range query in the
background of Big Data.
B. COLA For Disk Component

To achieve high read performance of our pLSM-Tree, we
implement Cache Oblivious Look-ahead Array as the
exponent on disk. To speed up searching in external
memory, we protected each component on disk with a
Bloom Filter, just as bLSM does. Considering the balance
between insertion throughput and lookup cost, pLSM
consists of three components: C0 in memory and C1, C2 on
disk. In this section we describe the improvements made by
approaching COLA by M.A. Bender as the component on
disk instead of B-Tree [6].
As is analyzed in the previous section, the block transfer
for insertion or deletion needs much fewer disk seeks.
When an element is added into the COLA while the first
array is full, a series of merge will happen to maintain the

structure of COLA. As each merge is performed between
the adjacent arrays, an element is at most involved in ��� �
merges. Since the process of merge sort is very I/O
efficient, such merge operation will not lead to extra disk
I/Os. The cost for merging per element is O(1/B), on
average there are O(��� �) elements to be merged. So with
the algorithm in Figure3, average insertion cost is O(��� �

�), which improves greatly from O(���� �) for B-Tree. To
speed up the insertion process, we added another array of
each size called shadow array for temporary storage. At the
beginning of each step, the shadow array is empty. As is
shown in Figure 6, during the merging process each array
will be merged to the shadow array with the same size and
then to the next array. This measure trades off space for
time and ensures an efficient insertion performance.

Figure 3. The Insert Algorithm for COLA

Bloom Filter is a random data structure with high space
efficiency. By implementing Bloom Filter to the
components on disk, we could reduce the cost of point
query from N to 1+N/100.(N is the number of component
on disk) The amount of memory it required is related to the
number of elements to be added, not the size of them, so
the memory overhead of Bloom Filter is insignificant.
One limitation of Bloom Filter is false positive, we may
wrongly judge a non-exist element as existing in the set.
Another limitation is that Bloom Filter doesn’t support
deletion. To support deletion in our pLSM, some
modifications need to be implemented.
The LSM-Tree could transform random I/O to sequential
I/O by performing batch write. A COLA with N elements
have log N arrays, one array for each power of two. This
mechanism could ensure that all the elements in one COLA
could fill up one or several blocks, which provide great

242

convenience for lookups and scans. So we chose COLA as
the component of external memory.
Another advantage of COLA is that each array is sorted, so
we can easily use binary search on each of them to attain
O(��� �) time cost for each array. Since there are totally
��� � arrays, the total cost of searching is O(���� �
�) .
Unlike B-Tree, COLA does not theoretically support range
query well. In order to do a range query, we need to scan
each full level to judge whether a key of the element is in
the range. But when dealing with mass amount of data, the
time cost for range query in COLA is generally less than
that in B-Tree. Because all the elements of COLA are
centralized stored in consecutive blocks, while in an aged
B-Tree even elements on contiguous blocks may scattered
on the disk. However, in our experiment the range query of
pLSM doesn’t perform well due to limited data size.

In a LSM-Tree when Ci component is full, it will be
merged into the next smaller component Ci+1 in a process
called rolling merge, as is shown in Figure 4. This merge
process is closely related to online B-Tree merging. B-Tree
merging addresses situations where contents of a single
table index have been split across two physical B-Trees that
now need to be reconciled [12]. This process could reduce
the storage requirements but add complexity of the merging
algorithm. Besides, since B-Tree needs to maintain a global
ordered array of leaf nodes, extra cost would be needed in
the process of rolling merge. This procedure needs complex
mechanism of concurrent control and locking operation,
which could not meet the need of availability for NoSQL
databases.
If COLA instead of B-Tree is used in pLSM, the rolling
merge process could be simplified. COLA doesn’t call for a
global ordered structure, so what we need to do is just
insert all the elements into Ci+1, with the disk I/O
efficiency of merge process. It is also much easier to
schedule the merge process between components.
C. Dealing with Bulk Deletion
One of COLA’s limitations is that it hasn’t yet supported
efficient bulk deletion operation. This is because once an
element is removed, all of the other elements need to be
reallocated to the upper levels to maintain the whole
structure since no partly full arrays is permitted in COLA.

So there has not been an efficient way of deletion for
TokuDB.
To support real-time data warehouse, we must ensure the
non-stop availability and rapid updating [14]. Since
updating is a deletion followed by an insertion, the ability
to efficiently delete bulk of data from a table is very
important. Therefore, it is necessary for our pLSM index to
support efficient bulk deletion. T. Lilja [13] provided an
efficient two-phase online bulk deletion algorithm for B-
Tree index on a multi-attribute key, which could be
performed similarly in our pLSM. To begin with, we could
mark elements in arrays of COLA as deleted in the first
phase. These marked elements still take up spaces and will
be merged to next arrays once new elements are added. But
they are invisible for query operation since they have been
marked as deleted. These elements will be physically
deleted when the component is full and the process of
rolling merge begins. Or after the empty rate of a COLA
reaches its threshold value, the compact algorithm will start
to clear the deleted item. In the implementation of COLA,
there is no structure modification at all. What we need to do
is just adding the elements that are not marked as deletion
to the next component and discarding the marked ones.
And since the size of arrays in COLA is a power of 2, we
could take advantage of this feature and merge them into
the next component in batch. In order to deal with deletion
in the largest component, the pLSM needs to be regular
compacted. The compact algorithm will be shown in
Section E later.
D. A Variant of Bloom Filter
In the previous section, we have discussed about using
Bloom Filter to speed up judging whether a given element
is in the LSM Tree. However, the original Bloom Filter
doesn’t support deletion because one bit in the Bloom Filter
is shared by several keys. If we simply set a bit related to
one key from 1 to 0, many other keys will be influenced.
This makes components in external memory append-only
ones. To solve this problem, we created a variant of Bloom
Filter as Delete Filter and protected the on-disk
components with it together with Bloom Filter.
The Delete Filter is the same as Bloom filter, except that
we add the operation of delete. In the operation of delete,
we set the bit corresponding to the given key from 1 to 0.
This operation is an obvious mistake in Bloom Filter, but
when we combine the usage of Bloom Filter and Delete
Filter, this mistake will not affect the accuracy of query and
only brings some extra overhead in searching a non-
existing element in COLA. When an element is marked as
deleted, we will add it into the Delete Filter. When judging
whether a component contains a given key, we first search
it in the Delete Filter. If it is in the Delete Filter, we will
conclude that it doesn’t exist. If it is not in the Delete Filter,
we will turn to the Bloom Filter as we usually do.
When we update a record with a given key, we need to
delete the record and re-insert it with the same key but
different value. Then we would first set the corresponding

Figure 4.The process of Rolling Merge

243

bit of the key from 1 to 0 in Delete Filter. Thus it will
inevitably influence other keys. For instance, one bit in
Delete Filter is related to three keys A, B and C. When we
re-insert key A and set this bit to 0, if we continue to judge
key B, the Delete Filter will wrongly judge that B exists in
the component while in fact B has been deleted. But
according to our Search algorithm (in the chart of algorithm
2), even we wrongly judge B is in the component, since we
can’t find it in any array of COLA, the search algorithm
will return null value in the end. The mistake caused by
Delete Filter only results in extra search cost for looking up
a non-exist element. But at the same time, we could support
deletion as well as insertion for on-disk components
protected by Bloom Filter. And since the number of
updated elements comprises only a small part, the overhead
brought by Delete Filter will be very tiny. Thus it is a
reasonable solution to use Delete Filter to support deletion
in pLSM while implementing Bloom Filter to speed up
searching.
E. Compact Algorithm for COLA

When more elements are logically deleted, there will be
many “holes” in COLA. In order to reduce system
overhead, C1 component must be compacted before being
merged into C2. C2 component also needs compacting to
physically remove marked elements.
To solve the above problem, we design a compact
algorithm for our pLSM. With the help of compacting, we
could and improve space utilization in pLSM. To describe
the degree of fragments in COLA, we present a parameter
empty rate, which is the ratio of current number to that of
marked elements in COLA. When the empty rate reaches a
threshold max empty rate the compact procedure will begin

to work. To describe the algorithm, we define deleted
elements as the marked elements, existing elements as the
elements that are not marked.
The basic idea is to find a largest array current array
according to the number of existing elements, and replace
the deleted elements with elements in other arrays. When
all the elements in current array are existing elements, we
store the remained existing elements in a temporary array
and clear up all but the current array in COLA. Then we
perform a bulk load of all remaining elements into COLA.
The specific algorithm is described in Figure 5.
V. EXPERIMENT
In this section, we compare the performance of pLSM with
B-Tree and original LSM-Tree (we compare the B-Tree
index used by our PuntDB).
A. Experiment Setup
Our experimental setup consists of a server machine with
32GB RAM and a 2.40GHz Intel(R) Xeon E5620 CPU
with 2 cores. The environment for our workbench is
Windows server 2008. The data set for insertion and
deletion experiments is key-value pairs in String format
that are randomly generated. We set the size of in-memory
component C0 of pLSM to be 128MB, the C1 component
to be 2GB and the C2 component to be 16GB. For B-Tree,
we use the 128MB RAM as its buffer.

B. Insert Performance
To test the insert performance, we tested the elapsed time
for different index structures as records are inserted. We
used two kinds of data set: one with random keys and the
other with ordered keys. Since the index buffer is 128MB,
the time will begin to grow rapidly after the index size
reached 128MB in this experiment. From the result of the
experiment, we could see that in both data sets B-Tree has
an obvious problem of aging. By contrast, pLSM has a
good performance for random insertion. Even pLSM meets
the worst insertion case; the insertion time is still
acceptable because there is no need to deal with
reorganization since the structure of COLA will never
change as B-Tree does once it is initialized.

Figure 6.The result of random insertion

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ti
m

e
E

la
ps

e/
s

Index Size/MB

 B-Tree
 LSM-Tree
 pLSM

Random Insertion Test

Figure 5. The Compact Algorithm for COLA

244

Figure 7.The result of ordered insertion

C. Query Performance
We tested the query performance for each structure by
pausing insertion for a while to query the data. To test the
raw query efficiency of different index structures, we tested
three types of query:
1. Query Set 1: This is a query set of point query. A point
query will exactly return the corresponding value. The keys
are randomly chosen from the inserted ones.
2. Query Set 2: This is a query set of range query. Many
small ranges (contains 100 items each) are randomly
chosen to be tested.

Figure 8. The result of random point queries.

Figure 9. The result of random range queries.

We could conclude from Figure 8 and Figure 9 that pLSM
is optimized for point query. But since there is no efficient
range query algorithm for pLSM, it has a worse
performance in range query.

VI. CONCLUSION
The implementation of pLSM is cost-effective in dealing
with Big Data and offering real-time response for lookups
and insertions. To attain the goal of write optimization, we
use the LSM-Tree model. To accelerate the query response,
we use COLA as the on-disk component. We also make a
variant of Bloom Filter and two-phase bulk deletion
algorithm to support efficient deletion in pLSM. To make
full use of space and reduce the frequency of rolling merge,
we put forward a compact algorithm for COLA.
Furthermore, a number of technical issues remain to be
done. To achieve better performance of COLA, the PuntDB
must have better data compression mechanism; in some
cases the whole COLA component is too large to be created
in the memory at one time, we need to improve the
dynamic expand mechanism. Moreover, how to define the
threshold of empty rate in compact algorithm needs to be
further studied.
Acknowledgement
Our work is supported by National Basic Research Program of
China (973 Program) No.2011CB302302, and Tsinghua
University Initiative Scientific Research Program.

REFERENCES
[1] http://www.tokutek.com/

[2] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, W. Lehner.
SAP HANA Database - Data Management for Modern Business
Applications. SIGMOD Record, 2011.

[3] R. Sears, R. Ramakrishnan. bLSM: A General Purpose Log
Structured Merge Tree. In SIGMOD,2012.

[4] Bayer, R.; McCreight, E. (1972), "Organization and Maintenance of
Large Ordered Indexes", Acta Informatica 1 (3): 173–189.

[5] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache
Oblivious algorithms. In Proc. 40th Annual Symp. On Foundations of
Computer Science (FOCS), pages 285-297, New York, Oct. 1999.

[6] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C.
Kuszmaul, and J. Nelson. Cache-oblivious streaming B-trees. In
SPAA, 2007.

[7] C. Jermaine, E. Omiecinski, and W. G. Yee. The partitioned
exponential file for database storage management. The VLDB
Journal, 16(4), 2007.

[8] R. Sears, M. Callaghan, Eric Brewer. Rose: Compressed, log-
structured replication. In PVLDB, 2008.

[9] P. O'Neil, E. Cheng, D. Gawlick, and E. O'Neil. The log-structured
merge-tree (LSM-tree). Acta Informatica,33(4):351-385, 1996.

[10] M. A. Bender. Performance of Fractal-Tree Database. Technical
Report, Tokuteck,2009

[11] P. William. Skip lists: a probabilistic alternative to balanced tree.
Communications of the ACM 33 (6): 668–676. 1990.

[12] X. Sun, R. Wang, B. Salzberg, and C. Zou. Online B-tree merging.
In SIGMOD, 2005.

[13] T. Lilja, R. Saikkonen, S. Sippu, E. Soisalon-Soininen. Online bulk
deletion. In ICDE, 2007.

[14] R.J. Santos, J. Bernadino, M. Vieira. Leveraging 24/7 Availability
and Performance for Distributed and Real-Time Data Warehouses.
In COMPSAC, 2012

0 200 400 600 800 1000 1200

0

500

1000

1500

2000

2500

3000
Ti

m
e

E
la

ps
e/

s
 B-Tree
 LSM-Tree
 pLSM

Index Size/MB

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k 110k 120k
0

10000

20000

Ti
m

e
E

la
ps

e/
s

Number of query

 B-Tree
 LSM-Tree
 pLSM

Random Point Query

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

Ti
m

e
E

la
ps

e/
s

Number of ranges

 B-Tree
 LSM-Tree
 pLSM

Range Query Test

245

