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 Abstract—Big Data boosts the development of data 
management and analysis in database systems but it also poses 
a challenge to traditional database. NoSQL databases are 
provided to deal with the new challenges brought by Big Data 
because of its high performance, storage, scalability and 
availability. In NoSQL databases, it is an essential 
requirement to provide scalable and efficient index services 
for real-time data analysis. Most existing index solutions focus 
on improving write throughput, but at the cost of poor read 
performance. We designed a new plug-in system PuntStore 
with pLSM (Punt Log Structured Merge Tree) index engine. 
To improve read performance, Cache Oblivious Look-ahead 
Array (COLA) is adopted in our design. We also presented a 
novel compact algorithm in bulk deletion to support migration 
of data from temporary storage to data warehouse for further 
analysis. 
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I.   INTRODUCTION 
 

In the process of informatization, the amount of data has 
been increasing at a high speed for both individuals and 
organizations. Data has played a significant role in every 
industry and business function field, bringing us into the 
era of data.  Therefore such problems brought by “Big Data” 
have been a common concern of the field. The 
requirements for Big Data management and analysis are 
widely different from those of traditional data management. 
Huge data volumes need to be kept online for querying and 
analyzing. In addition, queries need to be answered 
immediately to enable real-time analysis and decision 
making.  

To tackle such problems, we designed a plug-in system 
called PuntStore. PuntStore makes optimization in storage, 
distribution, scalability, heterogeneity and security. To 
satisfy the needs for temporary storage and make real-time 
analysis, we designed a non-relational database PuntDB. 
Just like the SAP HANA database [2], PuntDB provides the 
foundation for other high-level applications in PuntStore. 
To support real-time data analysis well, index service in 
PuntDB must be able to deal with large-scale, complex data 
and provide immediate availability of operational data. A 
highly efficient index could improve the speed of data 
retrieval.  

We must organize an index into a particular kind of data 
structure in order to make use of it. B-Tree is a general type 
of data structure to support index in relational databases. 
However, B-Tree has a problem of aging and suffers from 
disk-seek bottlenecks when faced with large volume of data 
[10]. Generally speaking, the analysis of Big Data relies on 
a storage type for analytical workloads. The analytical 
workloads emphasize write throughput and sequential reads 
over random access. Thus a data structure supporting better 
write performance is needed. 

The Log Structured Merge Tree (LSM-Tree) is a general 
model to reach write optimization [9]. But LSM-Trees 
tradeoff read performance for improving write throughput. 
Cache Oblivious Streaming B-Tree is a dictionary that 
implements efficiently insertions and range queries [5]. A 
widely used kind of Cache Oblivious Streaming B-Tree is 
Cache Oblivious Look-ahead Array (COLA). It enables the 
logically contiguous elements to be stored in the same 
block instead of scattered on disk. Therefore the seek time 
will be much shorter. However, COLA can’t make good 
use of memory as buffer. Moreover, it doesn’t support 
efficient deletion. Thus, we design a new index Punt LSM 
(pLSM) which could satisfy the needs for performing index 
probes in write optimized systems. 

In the following sections, we will discuss the specific 
implementation of pLSM index. Section 2 provides the 
necessary background of our pLSM structure. Section 3 is 
an overview of the index structures with the similar goal of 
our pLSM. Section 4 describes our design of pLSM in 
detail. We also presented a new compact algorithm to solve 
the problem of deletion for COLA. We offered the analysis 
of advantages of pLSM in bulk deletion. Section 5 is about 
the testing of our design of pLSM, showing how it 
outperformed B-Tree and the original LSM-Tree on 
different kinds of workloads.  

II.    BACKGROUND 
Nowadays, traditional magnetic disk still acts as the 

main storage media, so the performance of storage system 
is decided by hard disk seek time. Storage capacity per 
disk will continue to grow quickly, but it seems that seek 
time will change slowly. To make full use of the 
bandwidth and cope with random I/O, proper data 
structures for external memory are needed such as index 
for highly efficient query and inserting. 
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A. B-Tree 
B-Tree is a balanced search tree structure designed for 

external memory [4]. A large number of precious work 
shows that B-Tree provides optimal random reads. 
However, when a large number of elements are added into 
the tree, the external memory will become fragmentized 
and more random I/Os will occur, which will lead to long 
seek time. In order to improve write performance, a write-
optimized structure is needed. 
B. LSM-Tree 

A LSM-Tree is an index that consists of one smallest 
component in memory and several larger B-Tree 
components on disk [9]. Figure 1 shows the structure of a 
typical LSM-Tree. The in-memory component is defined as 
C0 and could be updated in place. The newest data is 
inserted into C0. After C0 is full, it is merged with the next 
smallest component C1. Other components on disk increase 
in size exponentially to ensure that the merge cost is 
minimized.  

 
 

The fundamental mechanism of LSM-Tree is to defer the 
process of putting index changes into disk and deal with the 
write operation in batch. By streaming data in and flushing 
it back to disk as one streaming operation, we can amortize 
the disk I/O cost. Moreover, since all components on disk 
are produced by merging with the next smaller component, 
LSM-Tree is updated by eliminating random I/O. However, 
the scan operations in LSM-Tree were not as efficient as 
those in B-Tree. 
C. Cache-Oblivious Data Structure 

The B-Tree mentioned above is typically analyzed in the 
Disk Access Machine model. This model makes an 
assumption that the memory of size M is organized into 
blocks of size B and the external memory is arbitrarily 
large. Within the DAM model, searching is optimal and 
insertion costs O(���� �) block transfers. 

Within the Cache Oblivious model by M.Frigo [5], the 
block size B is unknown to the algorithm so that any 
memory-specific parameterization could be avoided. Of the 
extant cache oblivious structures, the most widely 
mentioned is Cache Oblivious Look-ahead Array (COLA), 
which supports insertion of N elements in O(��� �/B) block 
transfers and searches in O(��� �) transfers [6]. Moreover, 
the COLA consists of ���� � arrays, each of which is either 
completely full or completely empty. Each full array is 
sorted so that we can use binary search to accelerate 
searching in one array. The kth array is of size �	  and 

arrays are stored in contiguously in memory. An example 
of COLA is shown in Figure 2. When an element is 
inserted into a full array, the array will be merged into the 
next array until all the elements are contained in full arrays. 

 
 
 

III.    RELATED WORK 
Although original LSM-Tree could improve write 

performance by eliminating random I/O, it scarifies read 
performance since in the worst case it involves a maximum 
of n I/Os (n is the number of components on hard disk) as 
each component of the tree needs to be checked. Besides, it 
also brings long write latency because of the asynchronous 
merge procedure between different components on disk. 

The bLSM-Tree designed by Sears is a new LSM-Tree 
variant [3]. It improves excessive read amplification by 
protecting C1, C2…CN tree component with Bloom Filters. 
This method could efficiently reduce query time when the 
element doesn’t exist. In order to eliminate long write 
pauses and provide optimal write performance, bLSM-Tree 
implements a mechanism called spring and gear schedule 
to replace the traditional partition schedule [7] and ensure 
the completion of merge processes at the same time. The 
primary limitation of bLSM is that the time of merging 
process is bound with the timing insertions into C0. To 
avoid blocking caused by this bound, we must halve the 
size of memory. Besides, we need to estimate the costs of 
future merge in order to apply this approach. This is not 
always possible in real-time systems. 

Similar work has been done to improve read 
performance. TokuDB is a store engine for MySQL[1]. It 
uses an efficient index to speed up query and attain high 
scalability. By leveraging write-optimized compression, 
TokuDB achieves up to a 90% reduction in HDD and flash 
storage requirements, without impacting performance [10]. 
Fractal Tree Index implemented by TokuDB is an efficient 
solution to improve writes performance with less tradeoff 
on read performance. It could run 10 to 100 times faster 
inserts than B-Tree. Although the query time for Fractal 
Tree is theoretically no better than B-Tree, it in fact 
performs much better since Random I/Os are avoided. 
However, many problems remain to be solved by TokuDB. 
For instance, TokuDB can’t support efficient deletion and 
updating. And its record’s size shouldn’t be too large, so 

Figure 1. A general structure of LSM-Tree 

Figure 2. An example of Cache Oblivious Look-ahead Array 
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TokuDB can’t be used to store BLOB (Binary Large 
Object). 

IV.    THE IMPLEMENTATION OF PLSM  
As mentioned in the previous section, it is crucial to 

ensure lookup and scan performance while seeking for 
write optimization. To attain that goal, we present a new 
LSM-Tree variant pLSM to address the limitation of LSM-
Tree mentioned above. Just like the bLSM implementation 
is based upon Rose, a column-compressed, log-structured 
replication [8], we base pLSM on our PuntStore system. 
We implemented Skip List as the in-memory component 
for pLSM, which has a fast insertion and can improve the 
speed of random access indexed lookups. For components 
on disk, we implements Cache Oblivious Look-ahead 
Arrays to overcome the shortcomings of “aging” in B-Trees. 
To fulfill the task of bulk deletion, we design a new 
compact algorithm to make full use of disk space. 

A.  The Design of PuntDB 
PuntDB is an optimized NoSQL database to support the 

storage and analysis of Big Data. PuntDB provides the 
high-performance data storage and processing engine 
within Punt Store. Originally, PuntDB uses B-Tree as its 
index structure. However, B-Tree index doesn’t perform 
well in the task of wireless sensor network for data 
collection. When large volume of data swarms into the 
database at a high speed, the B-Tree index can’t perform so 
well as to support real-time insertion and query as expected 
before.  

The reason is the “aging” problem of B-Tree. As we 
know, the B-Tree performance is disk-bandwidth limited. 
High entropy insertion in B-Tree has a poor data locality, 
thus causing more random I/O.  This also happens in the 
case of range query. In a new-built B-Tree, range queries 
have good locality since leaf nodes are laid out sequentially 
on disk during this period. But when B-Tree becomes aged, 
the leaf blocks are scattered across the disk because the 
usage of bandwidth will drop to as little as 1%.[10] To 
avoid aging and eliminate random I/O, we designed pLSM 
index instead of B-Tree to support range query in the 
background of Big Data. 
B. COLA For Disk Component 

To achieve high read performance of our pLSM-Tree, we 
implement Cache Oblivious Look-ahead Array as the 
exponent on disk. To speed up searching in external 
memory, we protected each component on disk with a 
Bloom Filter, just as bLSM does. Considering the balance 
between insertion throughput and lookup cost, pLSM 
consists of three components: C0 in memory and C1, C2 on 
disk. In this section we describe the improvements made by 
approaching COLA by M.A. Bender as the component on 
disk instead of B-Tree [6].  
As is analyzed in the previous section, the block transfer 
for insertion or deletion needs much fewer disk seeks. 
When an element is added into the COLA while the first 
array is full, a series of merge will happen to maintain the 

structure of COLA. As each merge is performed between 
the adjacent arrays, an element is at most involved in ��� � 
merges. Since the process of merge sort is very I/O 
efficient, such merge operation will not lead to extra disk 
I/Os. The cost for merging per element is O(1/B), on 
average there are O(��� �) elements to be merged. So with 
the algorithm in Figure3, average insertion cost is O(��� � 


�), which improves greatly from  O(���� �) for B-Tree. To 
speed up the insertion process, we added another array of 
each size called shadow array for temporary storage. At the 
beginning of each step, the shadow array is empty. As is 
shown in Figure 6, during the merging process each array 
will be merged to the shadow array with the same size and 
then to the next array. This measure trades off space for 
time and ensures an efficient insertion performance. 

 
Figure 3. The Insert Algorithm for COLA  

Bloom Filter is a random data structure with high space 
efficiency. By implementing Bloom Filter to the 
components on disk, we could reduce the cost of point 
query from N to 1+N/100.(N is the number of component 
on disk) The amount of memory it required is related to the 
number of elements to be added, not the size of them, so 
the memory overhead of Bloom Filter is insignificant. 
One limitation of Bloom Filter is false positive, we may 
wrongly judge a non-exist element as existing in the set. 
Another limitation is that Bloom Filter doesn’t support 
deletion. To support deletion in our pLSM, some 
modifications need to be implemented. 
The LSM-Tree could transform random I/O to sequential 
I/O by performing batch write. A COLA with N elements 
have log N arrays, one array for each power of two. This 
mechanism could ensure that all the elements in one COLA 
could fill up one or several blocks, which provide great 
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convenience for lookups and scans. So we chose COLA as 
the component of external memory. 
Another advantage of COLA is that each array is sorted, so 
we can easily use binary search on each of them to attain 
O(��� �) time cost for each array. Since there are totally 
��� � arrays, the total cost of searching is O(���� �
�) .  
Unlike B-Tree, COLA does not theoretically support range 
query well. In order to do a range query, we need to scan 
each full level to judge whether a key of the element is in 
the range. But when dealing with mass amount of data, the 
time cost for range query in COLA is generally less than 
that in B-Tree. Because all the elements of COLA are 
centralized stored in consecutive blocks, while in an aged 
B-Tree even elements on contiguous blocks may scattered 
on the disk. However, in our experiment the range query of 
pLSM doesn’t perform well due to limited data size. 

 
 
 
In a LSM-Tree when Ci component is full, it will be 
merged into the next smaller component Ci+1 in a process 
called rolling merge, as is shown in Figure 4. This merge 
process is closely related to online B-Tree merging. B-Tree 
merging addresses situations where contents of a single 
table index have been split across two physical B-Trees that 
now need to be reconciled [12]. This process could reduce 
the storage requirements but add complexity of the merging 
algorithm. Besides, since B-Tree needs to maintain a global 
ordered array of leaf nodes, extra cost would be needed in 
the process of rolling merge. This procedure needs complex 
mechanism of concurrent control and locking operation, 
which could not meet the need of availability for NoSQL 
databases.  
If COLA instead of B-Tree is used in pLSM, the rolling 
merge process could be simplified. COLA doesn’t call for a 
global ordered structure, so what we need to do is just 
insert all the elements into Ci+1, with the disk I/O 
efficiency of merge process. It is also much easier to 
schedule the merge process between components.  
C.  Dealing with Bulk Deletion 
One of COLA’s limitations is that it hasn’t yet supported 
efficient bulk deletion operation. This is because once an 
element is removed, all of the other elements need to be 
reallocated to the upper levels to maintain the whole 
structure since no partly full arrays is permitted in COLA. 

So there has not been an efficient way of deletion for 
TokuDB. 
To support real-time data warehouse, we must ensure the 
non-stop availability and rapid updating [14]. Since 
updating is a deletion followed by an insertion, the ability 
to efficiently delete bulk of data from a table is very 
important. Therefore, it is necessary for our pLSM index to 
support efficient bulk deletion. T. Lilja [13] provided an 
efficient two-phase online bulk deletion algorithm for B-
Tree index on a multi-attribute key, which could be 
performed similarly in our pLSM. To begin with, we could 
mark elements in arrays of COLA as deleted in the first 
phase. These marked elements still take up spaces and will 
be merged to next arrays once new elements are added. But 
they are invisible for query operation since they have been 
marked as deleted. These elements will be physically 
deleted when the component is full and the process of 
rolling merge begins. Or after the empty rate of a COLA 
reaches its threshold value, the compact algorithm will start 
to clear the deleted item. In the implementation of COLA, 
there is no structure modification at all. What we need to do 
is just adding the elements that are not marked as deletion 
to the next component and discarding the marked ones. 
And since the size of arrays in COLA is a power of 2, we 
could take advantage of this feature and merge them into 
the next component in batch. In order to deal with deletion 
in the largest component, the pLSM needs to be regular 
compacted. The compact algorithm will be shown in 
Section E later.  
D. A Variant of Bloom Filter 
In the previous section, we have discussed about using 
Bloom Filter to speed up judging whether a given element 
is in the LSM Tree. However, the original Bloom Filter 
doesn’t support deletion because one bit in the Bloom Filter 
is shared by several keys. If we simply set a bit related to 
one key from 1 to 0, many other keys will be influenced. 
This makes components in external memory append-only 
ones.  To solve this problem, we created a variant of Bloom 
Filter as Delete Filter and protected the on-disk 
components with it together with Bloom Filter.  
The Delete Filter is the same as Bloom filter, except that 
we add the operation of delete. In the operation of delete, 
we set the bit corresponding to the given key from 1 to 0. 
This operation is an obvious mistake in Bloom Filter, but 
when we combine the usage of Bloom Filter and Delete 
Filter, this mistake will not affect the accuracy of query and 
only brings some extra overhead in searching a non-
existing element in COLA. When an element is marked as 
deleted, we will add it into the Delete Filter. When judging 
whether a component contains a given key, we first search 
it in the Delete Filter. If it is in the Delete Filter, we will 
conclude that it doesn’t exist. If it is not in the Delete Filter, 
we will turn to the Bloom Filter as we usually do. 
When we update a record with a given key, we need to 
delete the record and re-insert it with the same key but 
different value. Then we would first set the corresponding 

Figure 4.The process of Rolling Merge 
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bit of the key from 1 to 0 in Delete Filter. Thus it will 
inevitably influence other keys. For instance, one bit in 
Delete Filter is related to three keys A, B and C. When we 
re-insert key A and set this bit to 0, if we continue to judge 
key B, the Delete Filter will wrongly judge that B exists in 
the component while in fact B has been deleted. But 
according to our Search algorithm (in the chart of algorithm 
2), even we wrongly judge B is in the component, since we 
can’t find it in any array of COLA, the search algorithm 
will return null value in the end.  The mistake caused by 
Delete Filter only results in extra search cost for looking up 
a non-exist element. But at the same time, we could support 
deletion as well as insertion for on-disk components 
protected by Bloom Filter. And since the number of 
updated elements comprises only a small part, the overhead 
brought by Delete Filter will be very tiny. Thus it is a 
reasonable solution to use Delete Filter to support deletion 
in pLSM while implementing Bloom Filter to speed up 
searching. 
E.  Compact Algorithm for COLA 

 
 
 
When more elements are logically deleted, there will be 
many “holes” in COLA. In order to reduce system 
overhead, C1 component must be compacted before being 
merged into C2. C2 component also needs compacting to 
physically remove marked elements. 
To solve the above problem, we design a compact 
algorithm for our pLSM. With the help of compacting, we 
could and improve space utilization in pLSM. To describe 
the degree of fragments in COLA, we present a parameter 
empty rate, which is the ratio of current number to that of 
marked elements in COLA. When the empty rate reaches a 
threshold max empty rate the compact procedure will begin 

to work. To describe the algorithm, we define deleted 
elements as the marked elements, existing elements as the 
elements that are not marked. 
The basic idea is to find a largest array current array 
according to the number of existing elements, and replace 
the deleted elements with elements in other arrays. When 
all the elements in current array are existing elements, we 
store the remained existing elements in a temporary array 
and clear up all but the current array in COLA. Then we 
perform a bulk load of all remaining elements into COLA. 
The specific algorithm is described in Figure 5. 
V.    EXPERIMENT 
In this section, we compare the performance of pLSM with 
B-Tree and original LSM-Tree (we compare the B-Tree 
index used by our PuntDB). 
A. Experiment Setup 
Our experimental setup consists of a server machine with 
32GB RAM and a 2.40GHz Intel(R) Xeon E5620 CPU 
with 2 cores. The environment for our workbench is 
Windows server 2008. The data set for insertion and 
deletion experiments is key-value pairs in String format 
that are randomly generated. We set the size of in-memory 
component C0 of pLSM to be 128MB, the C1 component 
to be 2GB and the C2 component to be 16GB. For B-Tree, 
we use the 128MB RAM as its buffer. 

B. Insert Performance 
To test the insert performance, we tested the elapsed time 
for different index structures as records are inserted. We 
used two kinds of data set: one with random keys and the 
other with ordered keys. Since the index buffer is 128MB, 
the time will begin to grow rapidly after the index size 
reached 128MB in this experiment. From the result of the 
experiment, we could see that in both data sets B-Tree has 
an obvious problem of aging. By contrast, pLSM has a 
good performance for random insertion. Even pLSM meets 
the worst insertion case; the insertion time is still 
acceptable because there is no need to deal with 
reorganization since the structure of COLA will never 
change as B-Tree does once it is initialized.  

 
Figure 6.The result of random insertion 
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Figure 7.The result of ordered insertion 

C. Query Performance 
We tested the query performance for each structure by 
pausing insertion for a while to query the data. To test the 
raw query efficiency of different index structures, we tested 
three types of query: 
1. Query Set 1: This is a query set of point query. A point 
query will exactly return the corresponding value. The keys 
are randomly chosen from the inserted ones. 
2. Query Set 2:  This is a query set of range query. Many 
small ranges (contains 100 items each) are randomly 
chosen to be tested. 

 
Figure 8. The result of random point queries. 

 
Figure 9. The result of random  range queries. 

We could conclude from Figure 8 and Figure 9 that pLSM 
is optimized for point query. But since there is no efficient 
range query algorithm for pLSM, it has a worse 
performance in range query. 

VI.    CONCLUSION 
The implementation of pLSM is cost-effective in dealing 
with Big Data and offering real-time response for lookups 
and insertions. To attain the goal of write optimization, we 
use the LSM-Tree model. To accelerate the query response, 
we use COLA as the on-disk component. We also make a 
variant of Bloom Filter and two-phase bulk deletion 
algorithm to support efficient deletion in pLSM. To make 
full use of space and reduce the frequency of rolling merge, 
we put forward a compact algorithm for COLA. 
Furthermore, a number of technical issues remain to be 
done. To achieve better performance of COLA, the PuntDB 
must have better data compression mechanism; in some 
cases the whole COLA component is too large to be created 
in the memory at one time, we need to improve the 
dynamic expand mechanism. Moreover, how to define the 
threshold of empty rate in compact algorithm needs to be 
further studied. 
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