
Fast Error-tolerant Location-aware Query
Autocompletion

Jin Wang
University of California, Los Angeles.

jinwang@cs.ucla.edu

Chunbin Lin∗
Amazon AWS

lichunbi@amazon.com

Abstract—Location-based services have become ubiquitous in
smart life, but typing queries in mobile devices is tedious
and error-prone. Therefore, query autocompletion is needed to
instantly provide users with query suggestions based on the
incomplete user input. A recent trend is to support error-tolerant
autocompletion, which could improve the usability by allowing
a small number of errors between the query input and prefixes
of strings in database. In addition, the query autocompletion
should be location-aware for location-based services since it
makes more sense to provide query suggestions for nearby
objects. Unfortunately, existing query autocompletion algorithms
cannot efficiently support both error-tolerate and location-aware
features at the same time.

In this paper, we propose a novel framework AutoEL to
support error-tolerant location-aware query autocompletion. The
error-tolerate feature is enabled by applying edit distance to
evaluate the textual similarity between given query and the
underlying data, while the location-aware feature is guaranteed
by choosing the k-nearest neighbors. To improve the efficiency,
we construct a hybrid data structure to jointly index spatial and
textural information. We also propose several optimizations on
data partition as well as search algorithm. Extensive experiments
on real datasets demonstrate that AutoEL outperforms the
baseline methods by up to an order of magnitude.

I. INTRODUCTION

With the rapid growth of Location-based Services, it be-
comes more and more important to support location-aware
search engines, which aim at finding point-of-interests (POI)
such as hotels, restaurants and gyms near the current location 1.
The input of such search engines is usually text keywords, e.g.,
the names of hotel and restaurant. However, it is challenging to
type complete and correct full names in mobile devices due to
the following facts [12]: (i) mobile devices usually have small
screens especially for wearable devices, e.g., Apple Watch;
(ii) users may type via moving, which makes harder to hit the
correct key tokens; and (iii) it is difficult for users to spell the
accurate full names as some of those are quite long and hard
to spell. Thus, in order to form a correct query, users usually
need to repeat the time-consuming process of typing-trying-
refining multiple times.

To help users form complete and correct query input,
the feature of query autocompletion (QAC) becomes highly
necessary. QAC provides a list of suggested queries based on
the incomplete query typed by users so far. Then users can just

*corresponding author
1The current location can be obtained via embed GPS in mobile devices.

Fig. 1. Example of Location-aware Query Autocompletion (QAC). When
typing “sta” in the search box, system provides a list of suggested queries
(a), and the corresponding objects are shown in (b).

select their intend query to start the search. Location-aware
QAC takes the distance between the POI and query place into
consideration on the basis of it. Figure 1 shows a scenario of
location-aware query autocompletion. When a user types “sta”,
it shows a list of possible queries, e.g., “stable cafe” and “stan-
ford shopping center” for users to choose. For example, the
user’s intend query is “starbucks”, then the user can directly
click the fifth suggested query in the autocompletion to begin
a search without typing the complete query. Although QAC
indeed improves the user experiences, the existing studies on
QAC still have the following limitations.

On the one hand, the error tolerate feature is not supported
by previous studies about location-aware QAC and instant
search [7]. The output of these approaches is a list of queries
whose prefix are exactly matched with the user input, which
is not user-friendly as it does not allow typos in prefixes.
Actually, the real intend queries might not be included in
such a list just because of the typos. For example, the nearby
“burger king” will not show up in the list when typing
“bugger”, as they are not exactly matched. As a result, if users
do not have enough knowledge of the spelling, it would be
difficult for them to get reasonable query results.

On the other hand, although some existing studies support
error-tolerate QAC and instant search, they just ignore the
location information [2]. It might lead to meaningless search
results as the suggested POIs may be thousand miles away
from current location. As is observed from Figure 1, the
top-1 suggestion is more than 100 miles, which is not quite
interesting for users.

One possible solution is to make simple extension on the
basis of existing studies. We can first adopt the state-of-

the-art approaches for error-tolerate QAC to identify textual
similar objects, and then find those nearest to current location.
However, the search performance could be sub-optimal due to
the lack of filtering power. Although there are some pruning
techniques in string similarity queries [13], [5], [8], [9], [10]
and spatial keyword search [11], [1], they cannot directly be
adopted in the QAC problem where the input query needs to
be dealt incrementally.

To address above limitations, we propose a novel framework
AutoEL to support location-aware and error-tolerated QAC.
More precisely, (i) The error-tolerate feature is enabled by
applying edit distance, which has been proven to be the most
widely used metric to capture typographical errors [4]. If
the edit distance between the query input and the prefixes
of objects in database is within a given threshold, such
objects should also be regarded as candidates; and (ii) The
location-aware feature is guaranteed by choosing the k-nearest
neighbors (KNNs) objects that are candidates from the current
location. In real world applications, the suggested queries
should be returned within milliseconds even for large amounts
of data. Therefore, it is essential to provide an efficient
solution. To improve the performance of AutoEL, we construct
a hybrid index structure to jointly index the spatial and textual
information. Then a top-down search algorithm can be adopted
to incrementally find all results. Since the pruning power is
closely related to the spatial and textual features, we also study
the problem of space segmentation in order to make similar
objects closer to each other in the index structure, which
will further boost the efficiency. Furthermore, we propose
several optimizations to avoid unnecessary accesses to index
and fetching redundant results. We perform a comprehensive
evaluation on two real-life datasets to demonstrate the superior
efficiency of our algorithms. The results show that AutoEL
outperforms the baseline methods with 3× to 13× speedup.

II. FRAMEWORK

A. Problem Formulation

In the ELQA problem, we are dealing with the spatio-textual
objects where an object S has two fields, a textual description
s and a spatial location sl, denoted by S =

〈
s, sl

〉
. Here s is a

string with several characters and sl is a location descriptor in
multi-dimensional space. To enable the error-tolerate feature,
we adopt the similarity metric of edit distance. Given a string
s, let s[i] denote the ith character of s and s[i..j] denote
the substring of s starting from s[i] and ending at s[j]. We
call the substring s[1...j] (j ∈ [1, |s|]) the prefix of s and
denote it as P j

s . We use the Euclidean distance between two
locations to measure the spatial distance. The spatial distance
between two spatial textual objects S and Q is denoted as
DIST(S,Q) =

√∑n
i=1(S

l
i −Ql

i)
2 where n is the number

of dimensions 2. Next we formally define the problem of
Error-tolerate Location-aware Query Autocompletion (ELQA)
as Definition 1.

2In this paper we focus on the case of n=2

Definition 1 (ELQA): Given a query Q = (q, ql), a database
of spatio-textual objects S, an edit distance threshold τ and
a number k, the location-aware query autocompletion aims at
finding a set of objects R s.t. |R| = k, and for any S ∈ R,
S′ ∈ C − R, we have DIST(S,Q) ≤ DIST(S′, Q), where
C = {S|S ∈ S ∩maxj∈[1,|s|] ED(q, P j

s) ≤ τ}.

B. The AutoEL Framework

The cornerstone of this work is the most well-known text-
only approach IPCAN [3]. We employ the idea of text-first
methodology to construct index by integrating both spatial
and textual information and perform search accordingly. To
integrate the spatial information into the trie index, we split the
whole space into a set of disjoint grids, which are rectangles.
Each object in database belongs to one grid. We denote the
set of grids as G. Suppose there are M grids in total, the
ith grid is denoted as gi, i ∈ [1,M] We can attach a bitmap
with cardinality of M to each trie node, with the bitmap for
a trie node n as Gn. We will also use Gn to denote the set of
grids corresponds to node n without ambiguity. If gi has an
object belonging to n, then the value of Gn[i] is set as 1 and
otherwise 0.

We use a max heap R to keep the current top-k results
ranked by the spatial distance. The spatial distance between the
object on top of R and ql is denoted as UBR. Since each trie
node n corresponds to a set of objects that share the common
prefix, it also has a corresponding spatial area that encloses all
the objects. Then we can use the lower bound of the spatial
distance between ql and the area corresponding to n, denoted
as MINDIST(ql, n), to perform pruning. If MINDIST(ql, n) >
UBR, we can prune the whole sub-trie of n even n is still an
active node. The reason is that it is guaranteed that no object in
the sub-trie can have smaller spatial distance than the current
k objects in R. Given a location ql and a grid g, the minimum
distance between ql and any object in g can be calculated with
Equation 1 as illustrated in [6].

MINDIST(ql, g) =

√
|qlx − gr,x|

2
+ |qly − gr,y|

2 (1)

where

gr,x(gr,y) =

g.lx(g.ly) qlx(q

l
y) < g.lx(g.ly)

g.ux(g.uy) qlx(q
l
y) > g.ux(g.uy)

qlx(q
l
y) otherwise

(2)

In order to integrate above computation into IPCAN, we
need to compute the value of MINDIST(ql, n) once we
reach a new active node n. If the given node n satisfies
MINDIST(ql, n) ≥ UBR, we can safely exclude n from the
active node set. Note that the value of UBR can be updated
by checking the bitmap of a trie node without fetching the
results. To reach this goal, we maintain the cardinality of
each grid g ∈ G as |g|. We can compute the upper bound of
distance MAXDIST(ql, g) in a similar manner with Equation 1
according to [6]. By computing this upper bound, we can
know that there are |g| objects with MAXDIST(ql, g) distance.
Consequently, we can update the value of UBR from node n

by estimating the upper bound of distance for the kth smallest
object from all grids in Gn.

Algorithm 1: Location-aware QAC(S, Q, τ , k)

Input: S: The collection of strings; Q =
〈
q, ql

〉
: The

query; τ : The edit distance threshold; k: The
number of results

Output: R: The top-k results
begin1

Initialize A with 〈root, 0, ∅, 0〉;2

Initialize UBR as ∞;3

for i = 1 to |q| do4

Initialize A′ = ∅;5

foreach A ∈ A do6

if A.dn + 1 ≤ τ then7

Add 〈n, dn + 1, j, dn,j + 1〉 into A′;8

Traverse the subtrie rooted by n within height9

τ −A.dn,j + 1, check each node n′;
if MINDIST(ql, n′) ≥ UBR then10

continue;11

Update the value of UBR with12

MAXDIST(ql, n′);
d′ = A.dn,i +max(|n′| − |n| − 1, i− j)13

if d′ ≤ τ then14

Add 〈n′, d′, i+ 1, d′〉 into A′;15

16

Remove non-pivotal active nodes and duplicates17

from A′;
A = A′;18

Traverse leaf nodes reachable from all active nodes19

in A;
Compute the spatial distance and obtain the top-k20

results in R;
return R;21

end22

Algorithm 1 shows the process of ELQA. It first initializes
the active node set with the dummy trie root (line 2). And
the value of UBR can be initialized as the infinity distance
(line 3). For each input character, it incrementally computes
the active nodes with the IPCAN [3] method (line 6-18). To
utilize the textual information, it identifies new active nodes
by considering insertion (line 9) and deletion (line 8) where
the last character is matched. In this process, when accessing
a new trie node n, if MINDIST(ql, n′) ≥ UBR the sub-trie
rooted by n will be pruned (line 11). Otherwise, the value
of UBR is updated and the process of collecting active node
continues (line 12).

Next it fetches the results by visiting all the reachable leaf
nodes from the set of active node (line 19). Finally, it performs
verification using the true spatial information of each candidate
and return the top-k results (line 20). Actually, the steps
of fetching and verification do not necessarily happen after
seeing the whole query. Since the algorithm is incremental, it
can happen in the process of typing any character q[i] upon

practical requirement.

C. Optimization

To further improve the performance, we also made several
optimizations. The high level ideas of such techniques are
summarized as following.

1) Space Segmentation: To improve the pruning power
of Algorithm 1, a key step is to produce a high quality
segmentation of the space to generate grids. A straightforward
solution is to use some rule based methods, e.g. put all objects
with the same city into one grid. However, it might result
in data skewness problem which will reduce the filter power.
To address this issue, we propose a weight based approach
to perform space segmentation so as to generate the grids.
Specifically, we propose a weighting mechanism to describe
the data distribution of each grid by considering both spatial
and textual similarity. Based on it, we then devise a greedy
algorithm to decide the grids accordingly.

2) Avoid Unnecessary Bitmap Access: Recall that in Al-
gorithm 1, we need to check the bitmap of each trie node
in order to update the value of UBR, which might involve
heavy overhead considering the large number of trie nodes.
To improve the performance, we propose three bitmap-based
improvements: Firstly, we remove the duplicate bitmaps if a
parent has only one child node; Secondly, we will make a
bitwise XOR operation between the bitmap of a parent node
and its child where it only needs to check the bits with 1
for the child. Lastly, once we find a value larger than UBR,
we can stop earlier as this trie node cannot further lower the
spatial bound.

3) Improve Results Fetches: To avoid redundant node
traversal, we propose another optimization to eliminate de-
scendant active nodes before fetching results. The basic idea
is to identifying the ancestor-descendant relationship in the
process of finding active nodes. If an ancestor node and its
descendant co-exist in the set of active nodes, we remove all
descendant active nodes and only maintain the ancestor. To
keep record of this relationship, we maintain a forest data
structure where we can only use the root of each tree in the
forest for result fetching. This optimization strategy can be
integrated into Algorithm 1 without much space overhead by
modifying the places where results fetching is required (line
7-8, 14-15 and 18).

III. EVALUATION

A. Experiment Setup

TABLE I
DATASETS STATISTICS

Dataset Cardinality Avg String Length Size (MB)
OSM 2 million 17 183
SGP 12.9 million 19 866

We use two public available POI datasets to evaluate
our proposed techniques, which have been widely applied
in previous studies. OpenStreetMap 3 (OSM) is from the

3http://www.openstreetmap.org/

0

50

100

150

200

250

300

1 2 3 4

A
v
e

ra
g

e
 T

im
e

(m
s
)

Edit Distance Threshold

INSPIRE
META

AutoEL

(a) varying τ , OSM

0

500

1000

1500

2000

2500

1 2 3 4

A
v
e

ra
g

e
 T

im
e

(m
s
)

Edit Distance Threshold

INSPIRE
META

AutoEL

(b) varying τ , SGP

0

50

100

150

200

250

300

350

10 20 30 40 50

A
v
e

ra
g

e
 T

im
e

(m
s
)

Number of k

INSPIRE
META

AutoEL

(c) varying k, OSM

0

500

1000

1500

2000

10 20 30 40 50

A
v
e

ra
g

e
 T

im
e

(m
s
)

Number of k

INSPIRE
META

AutoEL

(d) varying k, SGP
Fig. 2. Comparison with State-of-the-art Methods

project of OpenStreet open-source spatial database. It consists
of POIs for multiple kinds of places in the United States,
such as parks, schools and restaurants. SimpleGeo Place 4

(SGP) is a database of business listings and POIs. The detailed
information is shown in Table I.

As there is no previous work for the ELQA problem,
we extend two previous studies as the baseline methods:
INSPIRE [14] and META [2]. The evaluation metric is the
average processing time per query. We implement the two
baselines by ourselves since there is no public available code.
All experiments are conducted on a server with an Intel i7-
4770 CPU processor, 32 GB RAM, running Ubuntu 14.04.
All the algorithms are implemented in C++ and compiled with
GCC 4.8.4.

B. Results and Analysis

We compare our framework with the extension of two state-
of-the-art methods. From the results shown in Figure 2, we
observe that our AutoEL achieves the best performance. For
example, as shown in Figure 2(c) when τ = 2 and k = 50 on
OSM, the average time per query for INSPIRE and META
is 371.54 ms and 92.32 ms, respectively, while AutoEL takes
only 28.64 ms. The reason is that compared with previous
approaches, AutoEL can perform pruning with spatial and
textual information simultaneously. Then we can avoid visit
redundant trie nodes with the help of spatial information.
In almost all the experiment settings, the performance of
META ranks second and obviously outperforms INSPIRE.
The reason could be that in the ELQA problem, finding similar
strings is more expensive than identifying spatial distance.
As META is specifically optimized for text-only task, the
performance would benefit greatly from its simplified trie
index. Meanwhile, INSPIRE enables pruning on the textual
dimension with inverted index, which is not as good at
supporting incremental search as trie-based indexes.

However, META cannot make use of the spatial information
to perform pruning. Therefore, it has much larger search space
and thus worse overall performance than AutoEL. We can
see that simply extending text-only approach is not efficient
enough Therefore, it also illustrates the necessity of devising
effective techniques to perform pruning with both spatial and
textual information.

4https://archive.org/details/2011-08-SimpleGeo-CC0-Public-Spaces

IV. CONCLUSION

In this paper, we study the problem of Error-tolerate
Location-aware Query Autocompletion and propose the Au-
toEL framework. We jointly index the spatial and textual
features in a trie-based index structure to perform pruning with
both information simultaneously. We devise a weight-based
strategy to split the space before index construction so as to
improve pruning power. We further develop effective search
strategies to accelerate the query processing. Experimental
results on real world datasets demonstrate the superiority of
our proposed framework over alternative solutions.

REFERENCES

[1] L. Chen, S. Shang, C. Yang, and J. Li. Spatial keyword search: a survey.
GeoInformatica, 24(1):85–106, 2020.

[2] D. Deng, G. Li, H. Wen, H. V. Jagadish, and J. Feng. META: an efficient
matching-based method for error-tolerant autocompletion. PVLDB,
9(10):828–839, 2016.

[3] G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text type-ahead
search. VLDB J., 20(4):617–640, 2011.

[4] G. Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31–88, 2001.

[5] C. Rong, C. Lin, Y. N. Silva, J. Wang, W. Lu, and X. Du. Fast and
scalable distributed set similarity joins for big data analytics. In ICDE,
pages 1059–1070, 2017.

[6] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
In SIGMOD, pages 71–79, 1995.

[7] S. B. Roy and K. Chakrabarti. Location-aware type ahead search on
spatial databases: semantics and efficiency. In SIGMOD, pages 361–
372, 2011.

[8] J. Wang, C. Lin, M. Li, and C. Zaniolo. An efficient sliding window
approach for approximate entity extraction with synonyms. In EDBT,
pages 109–120, 2019.

[9] J. Wang, C. Lin, and C. Zaniolo. Mf-join: Efficient fuzzy string similarity
join with multi-level filtering. In ICDE, pages 386–397, 2019.

[10] J. Wu, Y. Zhang, J. Wang, C. Lin, Y. Fu, and C. Xing. Scalable metric
similarity join using mapreduce. In ICDE, pages 1662–1665, 2019.

[11] J. Yang, Y. Zhang, X. Zhou, J. Wang, H. Hu, and C. Xing. A hierarchical
framework for top-k location-aware error-tolerant keyword search. In
ICDE, pages 986–997, 2019.

[12] A. Zhang, A. Goyal, R. A. Baeza-Yates, Y. Chang, J. Han, C. A. Gunter,
and H. Deng. Towards mobile query auto-completion: An efficient
mobile application-aware approach. In WWW, pages 579–590, 2016.

[13] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and X. Yuan. An efficient
framework for exact set similarity search using tree structure indexes.
In ICDE, pages 759–770, 2017.

[14] Y. Zheng, Z. Bao, L. Shou, and A. K. H. Tung. INSPIRE: A framework
for incremental spatial prefix query relaxation. IEEE Trans. Knowl. Data
Eng., 27(7):1949–1963, 2015.

